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1. Introduction

In studying the operations of a safety system, such as
nuclear power plants, complex chemical plants, etc., or
transportation systems such as airplanes, automobiles, we
must periodically decide whether to shutdown immediately,
or to continue operation and then periodically repeat the
analysis and decision process as additional information
The length
of each review period must be chosen to reflect the

about new costs and risks becomes available.

trade-off between computational complexity and a realistic
representation of the decision process. Except for im-
portant computational issues it does not lead to any con-
ceptual difficulties to assume that the review period is
one hour or one day instead of one year. The purpose of
this paper is to formulate an influence diagram and a deci-
sion tree model that predicts several levels of accidents and
incorporates the necessary ingredients of plant shutdown as

well as the decision to continue operation.

2. Developing a Prediction Model
2.1 Accident classifications

Although in a safety system accidents occur in in-
numerable ways, they may fall into only a few categories
from the stand point of public safety. Evans and Hope(1984),
the group of experts of the Nuclear Energy Agency in
(NEA(1986)), and Tat Chi Chow and R.M.
Oliver(1988) proposed their classification schemes. In this
paper, we classify the accidents to take care of the inter-
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action between low and high severity accidents. To utilize
the fact that one severity level accident may contain in-
formation helpful in prediction the other, we classify the
accidents into different groups depending on their severity.
The number of different severity groups to be classified is
determined based on the purpose of the analysis and avail-
ability of information contained in data that makes such a
classification possible. We start with three different severity
groups : minor, significant, and severe accidents. The defi-



nition of each severity group may be different depending
on the types of accidents that happen in a system which is

going to be analyzed. In highway accidents for example,

we may define severe accidents as accidents that involve
death of lives, significant accidents as accidents that in-
volve some number of deadly wounded passengers, and
minor accidents as accidents that damage on car only with-
We introduce another classification
Level 2

accidents consist of severe accidents, level 1 accidents con-

out hurting passengers.
of accidents : level 0, and level 1, and level 2.

sists of level 2 accidents and significant accidents, and lev-
el 0 accidents consists of level 1 accidents and minor
accidents. Thus level 0 accidents include all precursors,
level 1 accidents are a subset of level 0 accidents, and
level 2 accidents are a subset of level 1 accidents. For
example, of there have been 20 minor, 6 significant, and 1
severe accidents in a period, then it means there have been
27 level 0, 7 level 1, and 1 level 2 accidents in a period.
In next section, we develop a forecasting model based on
such levels of accidents so that the model utilizes the in-
formation contained in different levels of accidents to fore-
cast another level of accidents. And then the forecasting
model is incorporated to form a decision model that de-

termines the most economical operating scheme.

2.2. Notations

Before we begin the analysis, we define some notations
that will be used through this paper.
Notations
T : length of review period
Z : decision made at the beginning of a review period

x; - time to next level j accidents, j=0, 1, 2

D : historical data available at the beginning of a review
period
ny(T) : number of level 0 accidents during a time period T

n,(T) : number of level 1 accidents during a time period T
ny(T) : number of level 2 accidents during a time period T

ps - probability of one or more severe accidents in a re-
view period

po - probability of one or more significant accidents in a
review period

pu - probability of one or more minor accidents in a re-
view period
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P yo : probability of no accidents in a review period

Dy : probability of level 0 accidents in a review period
p; : probability of level 1 accidents in a review period
p, : probability of level 2 accidents in a review period

C : construction cost

: cost of severe accident
- cost of significant accident
: cost of minor accident

- net revenue obtained from the operation of a system

per a period

2.3. A Prediction Model

Based on the above classifications of accidents, we can
draw an event tree in figure 1 that shows accidents ini-
tiation and escalation to more severe accidents.

my (T)

m, (T)

To

mey (T)

<Figure 1> An Event tree for Accident Initiation and
Escalation

A denotes the rate of initiating events, and 7y, and 1,

denote the probability of escalating to significant and se-

vere accidents, respectively. mq(T), m(T), and my(T) de-

note number of minor, significant, and severe accidents

during review period T, respectively. Then the following

relationship satisfies;
ny(T) = my(T)
n4(T) = my(T)+my(T)

no(T) = mp(Tyrm(T)+mo(T)

The event tree in figure 1 is translated into a statistically



Al HE¥E 1S LTI 2F 2B

For details
about influence diagrams, you may refer to Oliver and
Yang (1990).

We can assume prior distributions on model parameters

equivalent influence diagram as in figure 2.

and likelihood on number of accidents. After observing
data we get the posterior distributions, that is statistically

equivalent to an arc reversal process in the influence dia-

gram;

<Figure 2> An Equivalent Influence Diagram

P, o0 o(T),n 4 (T),0 o(T))=p(Ano(T))p (10 o(T),0 4

The influence diagram after observing data is depicted in
figure 3.

The predictive distribution of time to next accident, x;,

is obtained by integration out the unobservable parameters,
that is statistically equivalent to the node absorption proc-
ess in the influence diagram;

p(x] |HO(T),I’1 1(T)’n Z(T)): fffp(x] |}\.,7[1,T[2)p()\,]'[ 1’][2'“0
(T),n I(T),n2(T)) ...................................................................... (2)

If we let ® denote the vector parameter ATy, 15), and x
denote the vector time to next accidents (x5, X;, X,), then

we can rewrite as following;
p(x; Img(M)n (Mny(T)=1 ... [p(x;19) p(® M)dP

The probability distribution of pg, pg, par, and pyo
can be derived from the above obtained predictive dis-

tribution of time to next incident, x ;.
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<Figure 3> The Influence Diagram After Observing Data
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Since all the level 2 accidents are a proper subset of
level 1 accidents, the integral in equation (4) must subtract
the probability that a level 1 is not a level 2 accident.
Similarly, the integral in equation (5) must subtract the
probability that a level 0 is not a level 1 accident.

3. Incorporating with a Decision Model

Consider the influence diagram in figure 4 which repre-
sents the decision and events in a single period. L in the
influence diagram denotes a loss function that evaluates a
decision Z relative to x. At the beginning of the first pe-
riod we decide whether to shutdown the plant permanently
(Z=1) or to operate one year (Z=0). The decision is made
based on the preliminary knowledge obtained from the ob-
servation of historical data. The optimal decision is ob-
tained by choosing the option that minimizes the loss func-
tion among two alternatives; Z=1 for plant shutdown, and

Z=0 for continued operation;

min. 7 / L(Zx) p(x|D) dx

<Figure 4> An Influence diagram decision problem

min. 7 L(Z |D)

The shaded portion of the influence diagram in figure 4
represents the typical bayesian prediction model where
model parameters are updated using observed data and ab-

sorbed to get a predictive distribution as explained in the
earlier section.

We can construct an equivalent decision tree model in
figure 5 that explicitly shows the branches of possible de-

cisions and associated costs. If we operate the plant for

one period, the probability of minor accident is p,,. At the

end of each branch, we add a cost C for construction, C g
for a severe incident, C; for a significant accident and C
m for a minor incident, that includes cleanup, possible loss

of life, treatment of survivors, damage of equipment, envi-

-
O——)

<Figure 5> The decision tree of one-period decision problem

ronmental contamination,

and so forth. We obtain revenues, Cp, from the sale of

products producted from the plant. Typically, the net rev-
enue obtained by operation a plant for one year is small

compared to the large value of Cg. The expected cost as-

sociated with continued operation is pp(C + Cyy - Cp) +
pe(C + Cy- Cp) + ps(C + Cs - Cr) + pro(C - Cr);

this number can be compared with the certain cost of shut-
down, C, to yield:

shutdown, if pyCpr + p;Cu +pCs > Cp

operate, if poCamr +p1Cq tpCs < Cp

One should note that the optimal decision for a power
plant shutdown is very much dependent on who the deci-
sion maker is. In the case of a nuclear power plant, for
example, if the decision maker is the public, one may as-
sume larger costs for accidents, with subjectively assessed
large (sometimes infinite) cost of loss of lives and fear.
On the other hand, if the decision makers are the mana-
gerial personnel in a nuclear power plant, the construction

cost may be the dominant cost and the cost of loss of
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lives will be based on estimates from accidents in other
fields.
cision maker, the assessment of accident cost is highly

Even though our model can be used by either de-

subjective and should be the subject of much thought and
discussion.

In this paper we have outlined the basic structure of a
decision model and how that structure is interrelated with
the forecasting models.

5. Numerical example

In this section, we illustrate a simple numerical example.
Let's assume that the rate of accidents follows gamma dis-
tribution and the event occurs following poisson process.
And also assume that we have reached to the following
parameters based on historical data;

A-T(5,20), A,~T(2,20), 2,~I(1,20)

We adopt the convention that if a variable A follows a
gamma distribution with parameters a and J, the proba-

bility density function is expressed as

/3 ﬂ/\ o — 16—3/\
p(d)= F(a)

We assume that we have observed 0 severe accident, 1
significant accident, and 3 minor accidents in 10 units of
time. In other words, we have observed 4 level 0 acci-
The

posterior distributions of accident arrival rates are obtained

dents, 1 level 1 accident, and 0 level 2 accident.

as in equation (1) and they are also gamma because pois-
son is a conjugate prior of gamma distribution. Updated

parameters are following;

AglData~T'(9,30), A,[Data~T(3,20),
AyData ~T(1,30)

Predictive distributions are obtained by equation (2) and
they become a shifted pareto distribution;

3+ T

o+n
3+ T+a)

3+ T+ zx

a+n

p(x|Data) = (

If we want the probability of each level of accident in
next 10 units of time, we integrate the above equation

over time and we get following;

Prob.{level 0 accident in (0,10)} = p, = 0.92
Prob.{level 1 accident in (0,10)} = p; = 0.58
Prob.{level 2 accident in (0,10)} = p, = 0.25

which are equivalent to py = 092-0.58= 034, p, =
0.58-0.25=0.33, ps = 0.25, and pyo = [-0.92 = 0.08.

Then we can make a decision that we keep operating if

025Cs + 033C¢ + 0.34Cy is less than Cp.

4. Summary

For a given plant design, improved decisions on when to
shutdown an existing plant may be obtained by making
better predictions of failure rates, by exerting efforts to
collect more relevant information or by improving decision
making models which put that information to best use. It
is important that the models include the value of possible
loss of lives and fear along with cleanup, decommissioning,
relocation if the decisions derived from the model are to
be useful. The decision model we have described enables
us to investigate a class of optimal decisions on whether to
The

analysis and decision process is repeated at the end of

shutdown or continue operating one period of time.

each period with additional information about new costs
and risks.
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