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Fast Calculation of Capacitance Matrix for Strip—Line Crossings and Other
Interconnects

Jegannathan Srinivasan™ - 4 4 &" - % B ¥ R HF W& T E -6 oM B
(Jegannathan Srinivasan - Dong-Jun Lee - Duk-Sun Shim - Cheol-Kwan Yang - Hyung-Kyu
Kim - Hveong-Seok Kim)

Abstract - In this paper, we consider the problem of capacitance matrix calculation for strip-line and other interconnects
crossings. The problem is formulated in the spectral domain using the method of moments. Sinc-functions are employed as
basis functions. Conventionally, such a formulation leads to a large, non-sparse system of linear equations in which the
calculation of each of the coefficient requires the evaluation of a Fourier-Bessel integral. Such calculations are computationally
very intensive. In the method proposed here, we provide simplified expressions for the coefficients in the moment method
matrix. Using these simplified expressions, the coefficients can be calculated very efficiently. This leads to a fast evaluation of
the capacitance matrix of the structure. Computer simulations are provided illustrating the validity of the method proposed.
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1. Introduction

With the continuous increase in the clock rate of high
speed-systems and decrease in the dimensions of the pack-
ages and interconnects, the self and coupling capacitances
associated with the interconnects are becoming more and
more important in determining the system performance.
Parasitic capacitive couplings that exist between the inter-
connects can seriously degrade the signal integrity. The
literature on this topic is vast; several methods have been
proposed and implemented by numerous researchers. As
representative examples, we can cite here the references
(1-10]. Broadly, the techniques can be divided into two
categories. One is the differential equation method in which
the Maxwell’s equations are discretized and solved in the
differential form. Examples of this approach are the finite-
difference method [1] and the finite-element method [2]. These
finite methods lead to a large system of equations that, in spite
of being sparse, still requires huge computational resources.

The second category of techniques is the integral equation
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methods. Examples include the boundary-element method [3]
and the method of moments [5]. The integral equation
techniques usually result in a smaller matrix compared to
the differential methods, but these matrices are generally
fully populated thereby proving computationally intensive.
Therefore, continued effort is required to develop fast
algorithms for the evaluation of the capacitance matrix.

Recently, Daniel de Zutter et al. [5] have published a fast
method for the calculation of capacitance matrix which is
promising. The method is based on the MM formulation in
the spectral domain but employs sinc functions as the basis
functions as against the customary pulse basis functions.
The method was further refined more recently by Jegan-
nathan et al. [12]. In this paper, we perform an in-depth
study of the method presented in [12] for various structures
such as a strip and a slot crossing, a strip over a perforated
ground plane, a bend over a perforated ground plane and
multiple stripline crossings. We demonstrate that this method
could be used with great effect in all these cases.

2. Analysis

The static potential distribution ®(x,y,z) and the charge
density distribution p(x,y,z) in the structure must obey
the Poisson’s equation:

2 - ZPxy,z)
\ ¢(x7yyz)“ ¢ (1)

where € is the permittivity. In the following analysis, we
consider infinitely thin perfectly conducting (PEC) interconnects.
We can express the charge density distribution as:
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p=0(y-mf(x,2)+5(y-h-d)f,(x,2) 2)
Where 8 is the Dirac delta function.

With the Fourier transform defined as:
O(y) = [ pe e drdz . 3)
(where, to simplify the notation, the single integral sign

stands for both the integration over X and over z)

the Poisson equation becomes :

—Z— -k’ k% |®(y)=0
[ayz . ‘.J )

( y#h, y#h+d ), which has the solution :

4)

q)(y) - Cle,/k;+k_:y+cze— k+kZy 5)

in the bounded region; the arbitrary constants C; and Cz
are decided by the appropriate boundary conditions.

The boundary conditions and the continuity conditions
in the Fourier transform domain read

®(0)=0 (6a)
O(h+0)=®(-0) (6b)

£ i(I>(h+ 0)=¢ id)(h—O)—Fb
oy oy {6¢)
Oh+d+0)=®(h+d-0) (6d)
fs's§(:l>(h+d+0)=gz%tl)(hﬂi—O)—Fl (6e)
DPh+d+r)=0 66

where the argument of ¢ is the value of the height y,
where €; , € , € are the dielectric constants shown in
Fig. 1 ; F. and Fb are the Fourier transforms of the
charge density functions fi(x,z) and fi(x,z), respectively.
Imposing these conditions on the solution of Eqn. (4) and
eliminating the arbitrary constants, we find that:
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®, = Ak,.k,)sinh(k h) N
(D,=A(k',k:)[sinh(k,h)cosh(k,d)+%cosh(k,h)sinh(k,d)]— Fo_sinh(k )
(8)
Where ®,=0(h), ®=0(h+d), and k=vk+&
In the above equations A(kyk,) is given by :
A(kx,kz) = Pl Fb + P2 Fl (9)
where
P, = £ [coth(k, r)sinh(k,d) + 22 cosh(k.d)] P,
& € 10)
P, = {k,&,[sinh(k, h)(coth(k r)cosh(k,d)+ ﬁsinh(k,d )}
6‘3
+cosh(k A)( - coth(k, r)sinh(k,d) + S cosh(k, )} (17)
& £.

2 3

Rearranging the above equations, we obtain :

(R., Ru)(F.]:[QJ |
R, R,/\F) (@, (12)

where

R,, = P,(sinh(k h)cosh(k,d) + j—:cosh(k,h)sinh(krd)) .
R,, = P, sinh(k, k) (14)
R,, = P, sinh(k /) (15)
R,, = P, sinh(k, k) 16)

We note that
1

=—— | @ et dk dk,
= Gy LB b (17a)
1 KX ke
=—— 1| ® et e dk dk.
%= G0 Lo et i, (17b)
The Potential functions must satisfy :
li =
.r.:—»lllz?,?.slripﬂ(x’z) & (183)
li =
ety (52 =6 (18b)

where ¢, and cp are the constant potentials at which the
top and bottom structures are held. The Moment Method
requires that the structures be divided into small cells.
Then the unknown charge density function is expanded
using a sinc function basis. For instance, on the top
structure we have the charge density given by:

fix z)=i sinc[—”—(x—x )]xsinc[i(z—z )]
[AN4 pon i Ax cf Az i (19)

where (Xu,zi) are the coordinates of the center of the ith
cell on the top structure and Ax and Az are the sampling
intervals in the x and z directions. A similar expansion is



valid for the bottom strip. Following the details provided
in [5], we have the system of simultaneous equations:

[a] fo + [B] £, = &
vl £+ [8] fp = @y (20)

where [a], [B], [v], [8] are all square matrices, o , ®» are
constant column vectors having c, and ¢, as the elements,
respectively. The elements of the matrices have been
derived in [5]. For instance, the elements of the [a], [B],
[v], [8] matrices are given by:

Ace -
a; ==L (SR, (k) Ck,p, ke,

(21a)
By =5 SR (8 )k, 1)
7y = [$Ry, 1k, 2y, 10
R O WUSVACRS RS @)
where Acai =Ax -4z, pij is the distance between the

centers of the i and j™ cell, Jo is the zeroth order Bessel

function. Ry , Riz , Rz , Rz are the kemel functions.
The details of the kernel function are given by Egs. (13)
to (16).

3. New Method
In this paper, we provide a simplified formula for the

(21). This substantially speeds
calculation of the coefficients. Specifically, we can split

integrals in up the
the range of integration 0 to ®/A into three intervals: 0 to
ki, ki to kz, and k2 to ®/A where k; is such that kih, kid,
kir are all very small, say less than 0.1; k: is such that
koh, kod, kor are all greater than, say 3.0. Employing
small argument / asymptotic approximations appropriately
for the hyperbolic functions in the kernels, we may, after
some algebraic manipulations, arrive at the formulae
provided below in Table 1 and Table 2.

Rewriting the integral (21a) using ki and k2, we obtain
the following equation.

i
3

h ke
a = 7:::( o Rll(k.").](l(krﬂi)krdkr +J',“ Ru(kr)./o(krp; )kldkr +Ik: Rl!(kr).’ﬂ(krpf)krdkr)
A k
= 5 L +J"" RII(kr).,O(krpj)krdkr"’ll

where I =J': Rll(kr).,ﬂ(krp:])krdkr, I2 =j’*\ Rll(kr)JO(krpi/')krdkr ).

We can approximate I} and I, as follows.
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1) Integration from 0 to ki
L= ("R (k) ok 0,k dk, 22

The integrand Rii(k:)can be expressed as follows:

R, (k)=

sinh(k,h)cosh(k,d) + f‘ cosh(k,h)sinh(k,(l)]

{k,z, {sinh(k,h)(coth(k,r)cosh(k,tl) + % sinh(k,d))+ cosh(k,h)[g—‘ coth(k,r)sinh(k,d) + z—*cosh(k,d))“
3 2 3

Using small argument approximation; we have :

sinhx=x, coshx=1, cothx= —1—
X
and Rii(ks;) can be simplified as follows :
&,
[(k,h)+ —'(krd))
£,
Rll(kr) = P = d
ke|2+52khd +ﬁ—+iJ
ro& & r 83
_ rhe, +rde,
[e,6,h+66d +ree,]
Sk hd 0

The second equality above is obtained using &

o= rhe, 4 a= rde,
" [ree, +hes, +deg] Y T [res, +hes, +dee
1“2 2¢3 3“1 1“2 2“3 31 ],

Let

then Ru(k)=(a+a) and (22) becomes as follows:

¥ k, ky
I = J‘o R, (k) J (k. p )k dk, = L (a,+a,)J,(k,p,)k.dk, = (aﬂaz)f" Jo(k.p, k. dk.

(23)

From reference [11], we have :

[x"7, (@x)dx = éﬂ”/w (@x)+c

when this is applied to (23) with p=0, @=p;  x=£,, we obtain

k
k, ' _ kl‘]l(klpij)(a| +a2)
I| _(al+02);‘jl(krpi[) = T— Where p’l 20

v o

When £i =0,

we need to consider the limit y, 47 (24)
Fodnd " M

o
From reference [11], we have:

J (Y)_+(x)p where p>0 and x approaches to 0.
p(x) =
pi\2
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If p=1, then we obtain J.(f)=(§]

Applying the above result to (24), we obtain

lim ——2 = 1i EEACAS PR/ S

Ji(kpy) im Jy(klpi,)'kn - kp, ) k, ﬁ
p,.,—>0 py h£i=0 kl p,, 2 (kl py ) 2

2
1

2
We can obtain Table 1 by using similar procedure to (21b)~(21d).

Thus for #; =0, the integral equals 1, = —(q,+a,)

Table 1. The approximations for the integrals in the range

€

& & &
g+ 72+ 42
’ £y & &

ETRY xiN
L= " Ry(k) Sk ok, dk, = } 7 gtk ek,

/A
=a, [ Jylk,py)dk

We can obtain Table 2 by using similar procedure to
(21b)~(21d) in (ko, m/A]

from 0 to ki
toaral Result Result Table 2. The approximations for the integrals in the range
g when Ps =0 when P %0 from k2 to m/A
J' k'R“(k )3, (k,p,)k dk (a,*+a,)k; _(EM Integral Result Values of the Constants
. I du(k,pydk dk, 5 o,
| 2 k, J,k,p, : £
[RaksGpak, | 2 2h AT Rt nipmae, | o [F106000k
o v 2 p., & . []-}-i]
El
N a k| ak J,(kp,) . 7 g, € &
jo Ru (k) Jok,pyk dk, B o, J':R,,(k,)Jo(k,pu)k,dk, 0 e, [1+€+;+§]
b z al+ 3 kl JI k i
["RaGc) 1 ep ik, | @l | Coah A : .
o 2 P j' R, (k) J, (k.p, )k dk, 0 =
ks — 2

values of the constants

2= The, rde, A dhe,
S L. MU L S PN L. T
"leerreehreed], T [eerreehiecd],  [eerieehtecd)

2) Integration from ko to 7/A
/1A
I, = f Ry, (k) J, (k. p, )k dk, 25)

For large x , we have the following approximations:

inh e h ~e
sm X~-—2—' Ccos X~7 ! cothx =1

»

and Rii(k:) can be simplified as follows :

gl
(s 1+
(k,g_,)(k,,h)Hk,,d + fﬂ-k,,d} +[i) kd + (ﬁ) k,,d]
& & &
]
£

(k,ea)[l +& +i+ﬂ:}

& & &

R, (k) =

Using this Rii(k,) in (25), we obtain
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[ Ra0) 3, Gep )k dk, | 3, [P1,0k0,)dk,

In all these cases, the integral in the range ki to ko
can he evaluated using a numerical technique such as the
Gaussian Quadrature. Making use of the formulae pro-
vided in these tables to calculate the coefficients in the

matrices considerably speed up the calculations.

4. Numerical Results

The above method was implemented with a PC of a
26 GHz processor. In structures of Fig. 2~3, the
dielectric constants were selected as £€,=2.0-g¢ , €:=9.0-€p,
and €3=4.0-¢p . The length of the strips was taken as
1050pm and the width as 210#m. The parameters h=d=r=
300um were used. Capacitance matrices were evaluated
and the results are given in Table 3 and Table 4. As can
be seen in the tables, the method provided here works
several times faster than a direct evaluation of the
coefficients. Although we have shown here only limited
results, simulations were carried out for a large number
of cases. In all these cases, we find the method described
here works very fast.



v PEC

€34

Breler
€

h+ds

£1¢

\ A

PEC

Fig. 2. Parallel stripline crossing structure

Table 3. The results for a parallel stripline crossing in Fig. 2
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Fig. 4. A plane with slot over strip

Table 5. The results for a plane with slot over strip in Fig. 4

Cell "
Method | size | CufF) | CultF) | CuttF) | Cunliy | CRCURIOR
(¢m) time
Method
preﬁgnted 30 | 196.32 |-68.772|-68.775| 166.12| 5m16s
re
Direct
approach | 30 | 197.02 |-69.743|-69.745§ 166.71 | 40m 55s
as in5]
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Fig. 3. Perpendicular stripline crossing structure

Table 4. The results for a perpendicular stripline crossing in Fig. 3

Gell Calculation
Method | size | CulfF) | CwliF) | CulfF) | CeolfF) fime
(gm)
Methcgd
preﬁgr% ed 30 | 187.38|-52.9411-52.941] 15856 | 5m 50s
Direct
apprﬁ%‘% as| 30 |187.39| -5302 |-53019] 15856 | 44m 8s

In the structure of Fig. 4, the dielectric constants were
selected as & = 2080, & = 908 , and &5 = 4.0-¢p . The
parameters h=d=r=300im were used. The width and length
of patch are 1350um and 810um and the width and length
of slot in the patch are 630um and 210um on the top plane.
The width and length of the strip are 210pm and 810gm on
the bottom plane. The structures on each plane are
bilaterally symmetric. Capacitance matrices were evaluated
and the results are given in Table 5. The whole matrix
size was 1257 by 1257

nAE= AER i IolM2l wE HMAEHA AMIY

Cell
Method | size | CufF) | CuliF) | CultF) | CulfF) [CaiGUiation
(gm)
Method
presented | 30 | 468.66 |-92.584|-91.162] 140.12 | 13m 9s
here
Direct
approach | 30 | 469.35 |-92.147|-92.167| 140.32 | N,£6M
as_in[5]

In the structure of Fig. 5, the dielectric constants were
selected as € = 2.0, €2 = 90-& , and &€ = 4.0:¢y . The
parameters h=d=r=300im were used. The width and length
of strip are 210im and 1140gm on the top plane. The width
and length of patch are 2160um and 1140um on the bottom
plane. the width and length of the perforation in the patch
are 300um and 150um. The space between perforations is
420im in length and width. And the strip on the top plane
is positioned in the first space between perforation
columns from the left side. The structure on the bottom
plane is bilaterally symmetric. Capacitance matrices were
evaluated and the results are given in Table 6. The whole
matrix size was 2702 by 2702.
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Fig. 5. A stripline over a perforated plane

Table 6. The results for a stripline over a perforated plane in Fg. 5

Cell
Method size
{ym)

Calculation

CulfF) | ColfF) | CunlfF) | ConlfF) fime

Method
Drehsgrrged 30 [225.36|-135.78]-135.85} 713.63 [ 1h 13m 35s

Direct

appr,orilgp 30 1225541-136.18}-136.13| 714.01 | 6h 42m 22s
as i
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In the structure of Fig. 6, the dielectric constants were
selected as € = 2.0°¢0 , € = 9.0-& , and € = 4.0-¢p . The
parameters h=d=r=300um were used. The width and length
of the long strip are 2160um and 210zm on the top plane
and the short strip 210um and 450um. The width and
length of patch are 2160um and 1140gm on the bottom
plane. the width and length of the perforation in the
patch are 300 and 150um. The space between per-
forations is 420um in length and width. The structure on
the bottom plane is bilaterally symmetric. Capacitance
matrices were evaluated and the results are given in
Table 7. The whole matrix size was 3045 by 3045.
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Fig 6. A bended stripline over a perforated plane

Table 7. The results for a bended stripline over a perforated

Table 8. The results for a perpendicular multiple stripline
crossing in Fig. 7

Cell :
Method | size | CutF) | Colf) | Cut) | CulfP) Ca'f”’a"""
() me
19341 | 31812| 2482| 43445
Method 31821 20008 | 31.806] 42386
presented] 30 15m 8s
here 244 | 31812| 1931 | 43445
wa33| a2379| a3422| 22837
19304 | 31755| 2408| 43352
Direct 31.769| 20008 | 31738| 42598 |, o
approachf 30
as inls] 2478 | 31755| 19304 | a33s2| 238
a3381| 4258 43357| 20837

plane in Fig. 6

Cell )
Method | size | CufF) | CulF) | CultF) | CantfF) Ca‘g;‘rﬁ"m

{gm)
ppér%?rﬁgd 30 4676928538 285.18 | 806.74 | 1h 57m 50s
Direct
appiogcn | 30 |468.25 28647 |286.24 | 807.96 | 10h 3m 12s
as n

In the structure of Fig. 7, the dielectric constants were
selected as & = 2.0-€ &2 = 906 , and € = 40-& . The
parameters h=d=r=300um were used. The width and length of
the strip are 210um and 1050um on the top plane. The space
between strips is 210um in width. The width and length of
the strip are 1470um and 210gm on the bottom plane. The
structures on each plane are bilaterally symmetric. Capa-
citance matrices were evaluated and the results are given in
Table 8 The whole matrix size was 1078 by 1078,

4 PEC
(%]
heder
€2,
h+d
PEC

Fig. 7. A perpendicular multiple stripline crossing
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5. Conclusions

Calculation of capacitance matrix is critical in high
speed package design. Although there are a large number
of methods for this purpose, all of them are
computationally intensive. So there is a continual need for
improving the speed of these methods. Here we have
presented one such method. Simulations have indicated
that this method is very efficient.
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