References
- 김해경, 김태수, 시계열 분석과 예측 이론, 경문사, 2003
- 이덕기, 예측 방법의 이해, 고려정보산업, 1999
- C. Chatfield, Time-series forecasting, Chapman & Hall/ CRC, 2000
- P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting, Springer, New York, 2002
- R. G. Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filter, John Wiley & Sons, 1997
- G. Kitagawa, 'Non-gaussian state-space modeling of nonstationary time series', Journal of the American Statistical Association, vol. 82, no. 400, pp. 1032-1036, 1987 https://doi.org/10.2307/2289375
- G. C. Franco and R. C. Souza, 'A comparison of methods for bootstrapping in the local level model', Journal of Forecasting, 21, pp. 27-38, 2002 https://doi.org/10.1002/for.814
- O. A. Alsayegh, 'Annual energy consumption prediction using particle filters', Seventh International Symposium on Signal Processing and Its Applications, vol. 2, pp. 571-574, 2003 https://doi.org/10.1109/ISSPA.2003.1224941
- A. C. Tsakoumis, S. S. Vladov and V. M. Mladenov, 'Electric load forecasting with multilayer perceptron and elman neural network', 2002 6th Seminar on Neural Network Applications in Electrical Engineering, pp. 87-90, 2002
- J. Zhang, K. S. Tang and K. F. Man, 'Recurrent NN model for chaotic time series prediction', 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 1108-1112, 1997 https://doi.org/10.1109/IECON.1997.668440
- M. Crucianu, 'Bayesian learning for recurrent neural networks', Neurocomputing, 36, pp. 235-242, 2001 https://doi.org/10.1016/S0925-2312(00)00331-3
- C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
- J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford University Press, 2001
- N. J. Gordon, D. J. Salmond and A. F. M. Smith, 'Novel approach to nonlinear/non-Gaussian bayesian state estimation', Radar and Signal Processing, vol. 140, Issue 2, pp. 107-113, 1993 https://doi.org/10.1049/ip-f-2.1993.0015
- T. L. Song, 'Filtering theory', Journal of Control, Automation, and Systems Engineering, vol. 9, no. 6, pp. 413-419, 2003 https://doi.org/10.5302/J.ICROS.2003.9.6.413
- D. Pena, G. C. Tiao and R. S. Tsay, A course in time series analysis, John Wiley & Sons, 2001
- V. Kadirkamanathan and M. Niranjan, 'A function estimation approach to sequential learning with neural networks', Neural Computation, vol. 5, pp. 954-975, 1993 https://doi.org/10.1162/neco.1993.5.6.954
- D. J. C. Mackay, 'A practical bayesian framework for backpropagation networks', Neural Computation, vol. 4, no. 3, pp. 448-472, 1992 https://doi.org/10.1162/neco.1992.4.3.448
- R. M. Neal, Bayesian learning for neural network, Lecture Notes in Statistics No. 118, Springer-Verlag, New York, 1996
- N. Bergman, Recursive Bayesian estimation : navigation and tracking applications, Linkoping University, 1999
- J. F. D. Freitas, M. Niranjan and A. H. Gee, 'Hybrid sequential Monte carlo/kalman methods to train neural networks in non-stationary environments', IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1057-1060, 1999 https://doi.org/10.1109/ICASSP.1999.759925
- T. Zhang and A. Fukushige, 'Forecasting time series by bayesian neural networks', Proceedings of the 2002 International Joint Conference on Neural Networks, vol. 1, pp. 382-387, 2002 https://doi.org/10.1109/IJCNN.2002.1005502
- E. H. Tito, G. Zaverucha, M. Vellasco and M. Pacheco, 'Bayesian neural networks for electric load forecasting', 6th International Conference on Neural Information Processing, vol. 1, pp. 407 - 411, 1999 https://doi.org/10.1109/ICONIP.1999.844023
- A. Vehtari and J. Lampinen, 'Bayesian neural networks for industrial applications', Proceedings of the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pp. 63-68, 1999 https://doi.org/10.1109/SMCIA.1999.782709
- M. Crucianu, R. Bone and J.-P. A. De Beauville, 'Bayesian learning for time series prediction with exogenous variables', International Joint Conference on Neural Networks, vol. 4, pp. 2594-2599, 1999 https://doi.org/10.1109/IJCNN.1999.833484
Cited by
- Chaff Echo Detecting and Removing Method using Naive Bayesian Network vol.19, pp.10, 2013, https://doi.org/10.5302/J.ICROS.2013.13.8009