References
- J. Quackenbush, 'Computational genetics: computational analysis of microarray data,' Nature. Rev. Geneitics, vol. 2, pp. 418-427, 2001 https://doi.org/10.1038/35076576
- A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, S. Losses, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson Jr., L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, 'Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,' Nature, vol. 403, pp. 503-511, 2000 https://doi.org/10.1038/35000501
- U. Alon, N. Barkai, D. A. Notterman, K. Gish, Y. Barra, D. Mack and A. J. Levine, 'Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,' Proceedings of National Academy of Science USA, vol. 96, pp. 6745-6750, 1999 https://doi.org/10.1073/pnas.96.12.6745
- S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Rieters, M. L. den Boer, M. D. Minden, S. E. SaIlan, E. S. Lander, T. R. Golub and S. J. Korsmeyer, 'MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia,' Nature Genetics, vol. 30, pp. 41-47, 2002 https://doi.org/10.1038/ng765
- T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander, 'Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,' Science, vol. 286, pp. 531-537, 1999 https://doi.org/10.1126/science.286.5439.531
- X. Chen, S. T. Cheung, S. So, S. T. Fan, C. Barry, J. Higgins, K.-M. Lai, S. Dudoit, I. O. L. Ng, M. van de Rijn, D. Botstein and P. O. Brown, 'Gene expression patterns in human liver cancers,' Molecular Biology of the Cell, vol. 13, pp. 1929-1939, 2002 https://doi.org/10.1091/mbc.02-02-0023
- D. A. Notterman, U. Alon, A. J. Sierk and A. J. Levine, 'Transcriptional gene expression profiles of colorectaI adenoma, adenocarcinoma and normal tissue examined by oligonucleotide array,' Cancer Research, vol. 61, pp. 3124-3130, 2001
- M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster and T. R. Golub, 'Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning,' Nature Medicine, vol. 8, pp. 68-74, 2002 https://doi.org/10.1038/nm0102-68
- D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub and W. R. Sellers, 'Gene expression correlates of clinical prostate cancer behavior,' Cancer Cell, vol. 1, pp. 203-209, 2002 https://doi.org/10.1016/S1535-6108(02)00030-2
- L. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards and S. H. Friend, 'Gene expression profiling predicts clinical outcome of breast cancer,' Nature, vol. 415, pp. 530-536, 2002 https://doi.org/10.1038/415530a
- B. M. Bolstad, R. A. Irizarry, M. Astrand and T. P. Speed, 'A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,' Bioinformatics, vol. 19, pp. 185-193, 2003 https://doi.org/10.1093/bioinformatics/19.2.185
- Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P. Speed, 'Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation,' Nucleic Acids Research, vol. 30, pp. e15, 2002 https://doi.org/10.1093/nar/30.4.e15
- G. Sherlock, 'Analysis of large-scale gene expression data,' Current Opinion in Immunology, vol. 12, pp. 201-205, 2000 https://doi.org/10.1016/S0952-7915(99)00074-6
- R. Tibshirani, T. Hastie, B. Narasimhan and G. Chu, 'Diagnosis of multiple cancer types by shrunken centroids of gene expression,' Proceedings of National Academy of Science USA, vol. 99, pp. 6567-6572, 2002 https://doi.org/10.1073/pnas.082099299
- V. G. Tusher, R. Tibshirani and G. Chu, 'Significance analysis of microarrays applied to the ionizing radiation response,' Proceedings of National Academy of Science USA, vol. 98, pp. 5116-5121, 2001 https://doi.org/10.1073/pnas.091062498
- Y. Lu and J. Han, 'Cancer classification using gene expression data,' Information Systems, vol. 28, pp. 243-268, 2003 https://doi.org/10.1016/S0306-4379(02)00072-8
- I. Guyon, J. Weston, S. Barnhill and V. Vapnik, 'Gene Selection for Cancer Classification using Support Vector Machines,' Machine Learning, vol. 46, pp. 389-422, 2002 https://doi.org/10.1023/A:1012487302797
- Y. Lee and C. Lee, 'Classification of multiple cancer types by multicategory support vector machines using gene expression data,' Bioinformatics, vol. 19, pp. 1132-1139, 2003 https://doi.org/10.1093/bioinformatics/btg102
- M. Defernez and E. K. Kemsley, 'The use and misuse of chemometrics for treating classification problems,' Trends in Analytical Chemistry, vol. 16, pp. 216-221,1997 https://doi.org/10.1016/S0165-9936(97)00015-0
- A. Brazma and J. Vilo, 'Gene expression data analysis,' FEBS Letters, vol. 480, pp. 17-24, 2000 https://doi.org/10.1016/S0014-5793(00)01772-5
- S. Sharma, Applied Multivarate Techniques, John Wiley and Sons, New York, 1996
- S. Dudoit, Y. H. Yang, T. P. Speed and M. J. Callow, 'Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments,' Statistica Sinica, vol. 12, pp.111-139, 2002
- R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Third Edition, Prentice Hall, 1992
- G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, 1983
- L. H. Chiang, E. Russell and R. D. Braatz, 'Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis,' Chemometrics and Intelligent Laboratory Systems, vol. 50, pp. 243-252, 2000 https://doi.org/10.1016/S0169-7439(99)00061-1
- J.-H. Cho, D. Lee, J. H. Park, K. Kim and I.-B. Lee, 'Optimal approach for classification of acute leukemia subtypes based on gene expression data,' Biotechnology Progress, vol. 18, pp. 847-854, 2002 https://doi.org/10.1021/bp025517o
- B. Scholkopf, A. Smola and K.-R. Muller, 'Nonlinear component analysis as a kernel eigenvalue problem,' Neural Computation, vol. 10, pp. 1299-1319, 1998 https://doi.org/10.1162/089976698300017467
- S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K.-R. Muller, 'Fisher discriminant analysis with kernels,' Proc. IEEE Neural Networks for Signal Processing Workshop, pp. 41-48, 1999 https://doi.org/10.1109/NNSP.1999.788121
- S. Haykin, Neural Networks : a comprehensive foundation, Second edition, Prentice Hall, 1999
- D. Lee, S. W. Choi, M. Kim, J. H. Park, M. Kim, J. Kim and I.-B. Lee, 'Discovery of differentially expressed genes related to histological subtype of hepatocellular carcinoma,' Biotechnology Progress, vol. 19, pp. 1011-1015, 2003 https://doi.org/10.1021/bp025746a
- J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson and P. S. Meltzer, 'Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,' Nature Medicine, vol. 7, pp. 673-679, 2001 https://doi.org/10.1038/89044
- J. Fridlyand, S. Dudoit and T. P. Speed, 'Comparison of discrimination methods for the classification of tumors using gene expression data,' Journal of the American Statistical Association, vol. 97, pp. 77-87, 2002 https://doi.org/10.1198/016214502753479248
- A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer and Z. Yakhini, 'Tissue classification with gene expression profiles,' Journal of Computational Biology, vol. 7, pp. 559-583, 2000 https://doi.org/10.1089/106652700750050943
- I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, O.-P. Kallioniemi, B. Wilfond, A. Borg. and J. Trent 'Gene-expression profiles in hereditary breast cancer,' New England Journal of Medicine, vol. 344, pp. 539-548, 2001 https://doi.org/10.1056/NEJM200102223440801
- A. Rakotomamonjy, 'Variable selection using SVM-based criteria,' Journal of Machine Learning Research, vol. 3, pp. 1357-1370, 2003 https://doi.org/10.1162/153244303322753706
- J. Xu, X. Zhang and Y. Li, 'Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR,' Proceeding of International Joint Conference on Neural Networks 2001, pp. 1486-1491, 2001 https://doi.org/10.1109/IJCNN.2001.939584
- R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Second Edition, John Wiley & Sons, 2001
- J.-H. Cho, D. Lee, J. H. Park and I.-B. Lee, 'New gene selection method for classification of cancer subtypes considering withinclass variation,' FEBS Letters, vol. 551, pp. 3-7, 2003 https://doi.org/10.1016/S0014-5793(03)00819-6
- J.-H. Cho, D. Lee, J. H. Park and I.-B. Lee, 'Gene selection and classification from microarray data using kernel machine,' FEBS Letters, vol. 571, pp. 93-98, 2004 https://doi.org/10.1016/j.febslet.2004.05.087