DOI QR코드

DOI QR Code

Optimized Structured Treatment Interruption for HIV Therapy and Its Performance Analysis on Controllability

HIV 치료를 위한 최적화된 STI와 가제어성 관점에서 본 성능 분석

  • 고지현 (Drexel University 의용생체공학부) ;
  • 김원희 (한양대학교 전자전기컴퓨터공학부) ;
  • 정한별 (한양대학교 전자전기컴퓨터공학부) ;
  • 정정주 (한양대학교 전자전기컴퓨터공학부)
  • Published : 2004.12.01

Abstract

This paper presents optimized structured treatment interruption to reduce medication and establish long-term immune response against HIV-infection. Understanding HIV-related immune system control enables better HIV therapy without using full­treatments. Discrete regimen and continuous regimen characteristics are compared. Controllability of HIV-related immune system is analyzed for better understanding of optimal control in HIV therapy. Using optimal control provides more effective therapy than the full treatment without interruption in terms of controllability analysis. Case studies indicates that the proposed therapy induces long-erm non-progression while preserving high CD4 T-helper cell count and low virus load in HIV-infected patients.

Keywords

References

  1. A. S. Perelson and P. W. Nelson, 'Mathematical analysis of HIV-1 dynamics in vivo,' SIAM, vol. 41, no. 1, pp. 3-44, 1999 https://doi.org/10.1137/S0036144598335107
  2. S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz, D. F. Nixon, 'Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection,' AIDS, vol. 14, pp. 2313-2322, 2000 https://doi.org/10.1097/00002030-200010200-00012
  3. C. A. Janeway, 'Immunobiology,' Garland Churchill Livingstone, 2001
  4. M. A. Nowak and R. M. May, 'Virus dynamics: mathematical principles of immunology and virology,' Oxford University Press, 2000
  5. J. S. James, 'Human retroviruses and related infections,' Major U.S. Scientific AIDS Conference, Feb. 1995. [Online]. Available: http://www.aids.org/atn/a-216-01.html
  6. D. Wodarz and M. A. Nowak, 'Specific therapy regimes could lead to long-term immunological control of HIV,' PNAS, vol. 96, pp. 14464-14469, December 1999 https://doi.org/10.1073/pnas.96.25.14464
  7. D. Wodarz and M. A. Nowak, 'Treatment interruptions,' factsheets, AIDS.org, April 2003. [Online] Available: http://www.aids.org/factSheets/406-Treatment -Interruptions.html
  8. J. S. James, 'Treatment interruption; advanced HIV,' Dr. Cal Cohen Interview on Retroviruses Conference (part 2 of 2), April 2003. [Online] Available: http://www.aids.org/atn/a-390-01.html
  9. R. F. Stengel, R. Ghigliazza, N. Kulkami and O. Laplace, 'Optimal control of a viral disease,' In proceedings of American Control Conference, vol. 5, pp. 3795-3800, June 2001 https://doi.org/10.1109/ACC.2001.946229
  10. R. F. Stengel, R. Ghigliazza and N. Kulkami, 'Optimal enhancement of immune response,' Bioinformatics, vol. 18, pp. 1227-1235, March 2002 https://doi.org/10.1093/bioinformatics/18.9.1227
  11. R. F. Stengel, R. Ghigliazza, N. Kulkami and O. Laplace, 'Optimal control of innate immune response,' Optimal Control Applications and Methods, vol. 23, pp. 91-104, January 2002 https://doi.org/10.1002/oca.704
  12. M. E. Brandt and G. Chen, 'Feedback control of a biodynamical model of HIV-l,' IEEE Trans. on Biomedical Engineering, vol. 48,pp.754-759,July 2001 https://doi.org/10.1109/10.930900
  13. J. J. Kutch and P. Gurfil, 'Optimal control of HIV infection with acontinuously-mutating viral population,' Proceedings of the American Control Conference, vol 5, pp. 4033-4038, Anchorage, May 2002
  14. J. A. M. Felippe de Souza, M. A. L. Caetano and T. Yoneyama, 'Analysis of a sub-optimal scheme of drug dosage in the AIDS treatment,' In proceedings of American Control Conference, pp. 1188-1193, Denver, Colorado, June 2003
  15. R. Zurakowski and A. R. Teel, 'Enhancing immune response to HIV infection using MPC-based treatment scheduling,' American Control Conference, Denver, pp. 1182-1187, June 2003
  16. H. Shim, S. J. Han, C. C. Chung, S. W. Nam and J. H. Seo, 'Optimal scheduling of drug treatment for HlV infection: continuous dose control and receding horizon control,' International Journal of Control, Automation and Systems. vol. 1, no. 3, pp. 282-288, September 2003
  17. A. M. Jeffrey, X. Xia, and I. K. Craig, 'Controllability analysis of the chemotherapy of HlV/AIDS,' IFAC, 15th Triennial World Congress, Barcelona, Spain, 2002
  18. A. M. Jeffrey, X. Xia, and I. K. Craig, 'When to inititate HIV therapy: a control theoretic approach,' IEEE Trans. On Biomedical Engineering, vol. 50, no 11, pp. 1213-1220, Nov. 2003 https://doi.org/10.1109/TBME.2003.818465
  19. S. Kubiak, H. Lehr, R. Levy, T. Moeller, A. Parker, E. Swin, 'Modeling control of HIV infection through structured treatment interruptions with recommendations for experimental protocol,' CRSC Technical Report (CRSC-TR01-27). 2001. (Also at http://www.math.montana.edu/parker.)
  20. A. Schwartz, 'Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems,' Ph.D Dissertation, Univ. of California, Berkeley, 1996
  21. D. E. Kirk, 'Optimal Control Theory: An Introduction,' Prentice Hall,1970
  22. D. Wodarz, 'Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance,' J. Theor. Biol., vol. 213, pp. 447-459, August 2001 https://doi.org/10.1006/jtbi.2001.2426
  23. D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, 'Constrained model predictive control: Stability and optimality,' Automatica, vol. 36, pp. 789-814, 2000 https://doi.org/10.1016/S0005-1098(99)00214-9
  24. J. M. Lee and J. H. Lee, 'Approximate dynamic programming strategies and their applicability for process control: A review and and future directions,' submitted to International Journal of Control, Automation and Systems, May 2004
  25. R. Zurakowski, A. R. Teel, and D. Wodarz, 'Utilizing alternate target cells in treating HIV infection through scheduled treatment interruptions,' American Control Conference, Boston, pp. 946-951, June 2004