FYEHESHT
H142 M3
200449 99

o dloly 9dE 7=
sloJEjflofst+£ fro] AHe78A”

o § 7

Self Maintainable Data Warehouse Views
for Multiple Data Sources

Wookey Lee

Self-maintainabiiify of data warehouse (DW) views is an ability fo maintain the DW views without requiring
an access to (i) any underlying databases or (i) any information beyond the DW views and the delfa
of the databases. With our proposed method, DW views can be updated by using only the old views
and the differential files such as different files, referential integrity differential files, linked differential files,
and backwara-inked differentfial fles that keep the fruly relevant tuples in the delfa. This method avoids
accessing the underlying databases in that the method achieves self-maintainability even in preparing auxil-
iary information. We showed that out method can be applicable to the DW views that contain joins over
reiations in a star schema, a snowflake schema, or a galaxy schema.

Keywords : Data Warehouses, Self-Maintainability, Referential Integrity, DW Schema

* This work was supported by Korea Science and Engineering Foundation (KOSEF), through Advanced Information
Technology Research Center (AlTrc).
= et AREe

ChE dlolel @8 g JHxlE clolefgofsteA w2l A=A

[. Introduction

A data warehouse (DW) is a subject-oriented,
integrated, time-variant, and non-volatile collec-
tion of data organized in such a way that it sup-
ports management decision making. DW views
need to be periodically refreshed to reflect the up-
dates to the source data. In response to the
changes in the source data, many existing DW
views are refreshed by recomputing from scratch
(i.e., recomputing the new DW views from the
updated source data). Alternatively, some exist-
ing DW views are incrementally maintained by
accessing the source data. However, either of
these approaches can be costly. It is not un-
common that only a tiny fraction of some huge
source data is changed. The above approaches re-
quire an access to the huge source data, which
may even be in a remote site. As a result, both
CPU and I/ O costs of these approaches can be ex-
tremely high. A better approach is to incre-
mentally maintain the DW views without access-
ing the source data.

In this paper, we develop a novel method for
self-maintaining views for relations modeled in
various schema e.g., a star schema, a snowflake

schema, or a galaxy schema.

. Background

Recently Data warehouses are highlighted in
large-scale business environments such as OLAP
[Trujillo et al., 2003; Sifer, 2003; Lakshmanan et
al, 2003], Decision Support System [Nematia
et al., 2002; Berndt et al., 2003; Chari, 2003],
Data Mining [Zhuang et al., 2003], BI(Business
Intelligence) [Wixom and Watson, 2004], and
E-commerce [Piccinelli et al., 2003], Continual

Queries [Khan and Mott, 2002], Data Stream-
ing [Babcock et al, 2002], and Web applica-
tions [Babcock et al, 2002, Lee and Geller,
2004]. Maintaining materialized views under
source updates in a DW environment is one of
the important issues of data warehousing [Ceri
et al., 2000; Lechtenborger, 2003]. In this sec-
tion, we review existing methods of view main-
tenance by categorizing several corresponding
issues.

Self-maintenance is a notion that can be de-
fined as maintaining views by materializing
supplementary data so that the warehouse view
can be maintained without (or at least mostly
without) accessing base relations. The notion
was originally introduced by Blakeley et al.
[Blakeley et al., 1986]. The main idea is based
on a Boolean expression with sufficient and
necessary conditions on the view definition for
autonomously computable updates that can be
called self-maintainable views. Such studies fo-
cus on the conventional database views, not
on the DW view. Theodoratos et al. [2001]
summarize issues extensively related to self-
maintainability, and suggest a view selection
approach based on a DAG method. Several no-
table articles that deal with self-maintenance
aim to develop algorithms related to the in-
tegration and the maintenance of information
extracted from heterogeneous and autonomous
sources[Hyun, 1997; Quass et al., 1996].

Algebraic approaches in maintaining DW
views are discussed in [Quian and Widerhold,
1991; Griffin and Libkin, 1995; Hyun, 1997
Gupta and Mumick, 1999; Theodoratos et al.,
2001]. Quian and Widerhold[1991] present an
algorithm for incremental view maintenance
based on finite differencing techniques. The al-

170 dAd2stedy

H143 M3z

CFE lole e Il Holefgofsiea el B

gorithm derives the minimal incremental changes
in an arbitrary relational expression for a view
modification by replacing the original relational
algebraic expression with an efficient and in-
cremental re-computation. However, the algo-
rithm uses source relations and thus it lacks the
self-maintenance notion. Griffin & Libkin in
[Griffin and Libkin, 1995] extend the techni-
ques in [Quian and Widerhold, 1991]. Hyun
[1997] proposes to include functional depen-
dencies. Gupta and Mumick[1999] integrate
outer joins. These references do not consider
the concepts of referential integrity for the
maintenance of DW views. In this paper, some
of the common notations (mainly from [Quian
and Widerhold, 1991; Griffin and Libkin, 1995])
are extended to present some propagation rules
for DW views based on referential integrity
constraints,

There has been some research that considers
the database system as a rule system [Ceri et
al.,, 2000] that presents a comprehensive survey
on the roles played in DW views. In that pa-
per, the rule is classified as a constraint or a
trigger in that the constraint is descriptive
while the trigger is procedural. (However, in
this paper we use the term ‘constraint’ inter-
changeably with 'rule trigger.) There are sev-
eral works [Markowitz, 1991; Lechtenborger
and Vossen, 2003] corresponding to this meth-
od that have the potential to extend referential
integrity constraints to the maintenance of da-
tabase views. When a referential integrity rule
invokes cascade among database rules in the
DBMS, [Markowitz, 1991] presents the run
time execution problem and the safeness con-
dition respectively. Lechtenborger and Vossen
[2003] investigate the view maintenance prob-

lem with inclusion dependency but no refer-
ential integrity rules.

Database rules, including referential integrity
constraints, are utilized in maintaining material-
ized views in several articles such as [Mohania
and Kambayashi, 2000; Quass et al., 1996]. Quass
et al.[1996] use the referential integrity constraint
to determine whether a base relation is partic-
ipating in the views, and [Quass et al., 199] ex-
tends the works of Quian and Widerhold [1991]
and Griffin and 1ibkin[1995] to transform change
propagation equations into more efficient ones.
They use an “auxiliary view” in [Mohania and
Kambayashi, 2000] in order to maintain a se-
lect-projectjoin (SP]) view without accessing
base relations at the sources, which is similarily
called as “auxiliary relation” in [Kahn and Mott,
2002), and "complements’ in [Lechtenborger and
Vossen, 2003]. However, the validity and the
performance of these methods are strongly de-
pendent upon query types, as long as the view
conditions can screen the corresponding base
relation. This is discussed in the motivational ex-
amples in Section 2.

Even though the auxiliary view is neither a
simple view {e.g, to join several tables) nor does
the view have any selection condition (e.g.,
group-by condition), then it still has to depend
on the base relations. In that case, the auxiliary
view would be the base relation per se or the
whole relation should be replicated as auxiliary
information. Maintaining the replica of base rela-
tions itself invokes a serious problem, in addi-
tion to synchronization and concurrency control
problem [Zhuge et al., 1995; Ceri et al.,, 2002].
Therefore, the method is not truly self-main-
tainable or is just a nominal self-maintainable

method. In other words, it is not practical.

H143A 3%

AAFEAT 171

CHE dlole] @M g JHXIE Hlole9oste2 7ol A2l

A referential integrity -constraint is one of
the most fundamental constraints that any rela-
tional databases should satisfy. It can be speci-
fied between two relations in a database, and
used to maintain consistency among tuples in
the two relations. Informally, the constraint
states that a tuple r in a relation R (called the
referencing relation) that refers to another re-
lation S (called the referenced relation) must
refer to an existing tuple s in S.

To define the referential integrity constraints
more formally, let us remind the reader the con-
cepts of candidate keys and foreign keys. A candi-
date key of a relation is a minimal set of attrib-
utes whose values uniquely identify each tuple
in the relation. A foreign key is a set of attrib-
utes (in a referencing relation R) that refers to a
candidate key of the referenced relation S. The
foreign key of R must “match” the candidate key
of S, that is, they must have the same domains
and R.fk = S.ck (where R.fk denotes a foreign key
of R and S.ck denotes a candidate key of S).
Without loss of generality, we assume, in this
paper, that all relations in the database, which is
an organized collection of related data, are
“linked” by referential integrity constraints.

Whenever there is a change to a relation in an
underlying database, the corresponding views
need to be updated to reflect the change. This can
be done either in an immediate mode or a de-
ferred mode. In the former, the views are re-
freshed immediately; in the latter, all the changes
are first recorded in some differential files and the
views are then updated periodically using these
differential files.

The following describes the appropriate ac-
tions to be taken when a tuple is inserted into,
or deleted from, a referencing or referenced re-

lation:

Case 1: An insertion into a referencing relation.

Referential integrity can be violated if the val-
ue of the foreign key of a referencing relation R
does not exist in any candidate key of the refer-
enced relation S. Hence, an insertion of a tuple r
into a referencing relation R requires a look-up
in the referenced relation S. If there exists a tuple
s € S such that s.ck = r.fk, then r is inserted into
R. Since the views can be updated using the de-
ferred mode, it is more precise to say the
following. An insertion of a tuple r into a refer-
encing relation R requires a look-up in the
“current” referenced relation (S- VSU AS). If
there exists a tuple s & (S- VSU AS) such that
s.ck = r.fk, then r is inserted into R. Consequently,
the tuple 7 is recorded in the differential file AR.
It can be easily observed that such an insertion
into the referencing relation R does not affect the
referenced relation S.

Case 2: A deletion from a referencing relation. |

When a tuple r is deleted from a referencing
relation R, it can be recorded in the differential
file VR. Such a deletion from the referencing
relation R does not affect any referenced rela-
tion S.

Case 3 : An insertion into a referenced relation.

When a tuple s is inserted into a referenced
relation S, it can be recorded in the differential
file AS. Such an insertion into the referenced
relation S does not affect any referencing rela-
tion R

Case 4 : A deletion from a referénced relation.
Referential integrity can be violated when a

172 FYFEseT

H143 H3%

CHE dlole fXg Jix|& HolHeofsteA Fof XEd

tuple s is deleted from a referenced relation S.
There are several options, as shown below, if
such a deletion causes a violation:

(a) Reject the deletion (i.e., “on delete restrict”):
This is the default option. With this option,
the deletion of s from S requires a look-up in
the referencing relation R. If there exists a tu-
ple & R such that r.fk = s.ck, then such a de-
letion is rejected. Similar to Case 1, as the
views can be updated using the deferred
mode, it is more precise to say the following.
A deletion of s from S requires a look-up in
the “current” referencing relation (R- VRU
ARY). If there exists a tuple r & (R- VRU A
R) such that r.fk = s.ck, then such a deletion is
rejected. Similar comments applied to Cases
4(b) and 4(c). No change to both the referenc-
ing relation R and the referenced relation S.

(b) Attempt to cascade or propagate the deletion
(ie., “on delete cascade”): With this option,
the deletion of s from S requires a look-up in
the referencing relation R. If there exists a tu-
ple r& R such that r.fk = s.ck, then the data-
base system attempts to delete r from R. If
such an attempt is successful, the deleted tu-
ples are recorded in the appropriate differ-
ential files (e.g., s and r are recorded in V5
and VR, respectively). Otherwise, no change
to both the referencing relation R and the ref-
erenced relation S

(c) Modify the referencing attribute values to
NULL or the default values (i.e., “on delete
set NULL” or “on delete set default”): With
this option, the deletion of s from S requires
a look-up in the referencing relation R. If
there exists a tuple r & R such that r.fk = s.ck,
then the database system attempts to modify

the value of r.fk (provided that such an ac-
tion does rnot violate any integrity con-
straints). If such an attempt is successful,
then s is deleted and r is modified. Conse-
quently, s is recorded in VS, and 7 is re-
corded in both VR and AR (because a mod-
ification can be considered as a deletion-
and-insertion pair).

. Maintenance of DW Views
Involving Two Relations

In this section, we discuss the situation where
a DW view contains a join over two relations R
and S. Without loss of generality, let us assume
that R references S. For example, R represents
the employee relation (Emp) that contains em-
ployee information, and S represents the depart-
ment relation (Dept) that contains department
information as described below:

e Dept (deptID, deptName, budget)
¢ Emp (emplD, empNarme, salary, deptiD), where
deptID references Dept.deptID

The view = empName,deptName salary>50k (Emp X
Dept) finds the employee name and department
name for those whose salary is over $50K.

3.1 A Naive Approach: Recompute DW
Views from Scratch

Consider a select-project-join (SPJ) view Z10¢
(R X S) where: (i) R is a referencing relation,
(ii) R is a referenced relation, (iii) oc is the
(usual) selection based on a Boolean condition
C, and (iv) m is the (usual) projection on a list
of attributes A. When the underlying relations

(namely, R and S) of the view are updated, we

H14d 3=

ZIHEEEAT 173

CE Hlolel ¥ME 71Xl HolEjgolstea Fo| AU

need to update the view to preserve con-
sistency. A naive approach is to recompute 7a0c
(R" X S’} from scratch, where R’ is the new/
updated R and S is new/updated S. However,
this approach can be very costly, especially
when only a tiny fraction of R or S is updated.

3.2 A Basic Problem Representation

A more efficient approach is to obtain the new
view from the old view, differential files, and
source relations. It is well-known that the new/
updated referencing relation R’ can be expressed
in terms of the old relation R, its insertion AR,
and its deletion VR, i.e.,, R’=R-vRU AR. Simi-
larly, the new/updated referenced relation S’ can
be expressed as 5" = 5 -V DU AS. Therefore, the
new view 0c (R"X S’) can be expressed as
follows. To simplify our presentation, in the re-
mainder of this paper, we omit the select and
project components, and only show the join com-

ponent:

v'=R- VR UAR) X (S-VS U AS) 18]
=RXS) U RN AS)-RNX VS U (ARNXS)

U (AR X AS)-{ARNX ¥S)-(VRIXS)-(VRIX AS)

-(VRX v9) 2

Among the 3° = 9 terms in Equation(2), the
first term (R X S) is the old view. Hence, we do
not need to compute the new view entirely from
scratch; we can compute the new view by com-
bining the old view with the results from the
other eight terms. However, many of these eight
terms involve not only the differential files (e.g.,
AR, AS, VR, v S), but the source relations (i.e.,
the relations in the underlying database). Given
that source relations are required, the DW view
is not self-maintainable with this approach.

3.3 A Self-Maintainable Approach

Equation(2) can be simplified by exploiting
the properties of referential integrity con-
straints and the nature of the nine terms (e.g.,
by applying the propagation rules):

e In the Equation, the term (RIXS) represents the
old DW view.

o The term (RXAS) gives an empty relation.
Because of the referential integrity constraint,
for all & R, there exists s € S such that r.fk =
s.ck. In other words, there does not exist a tu-
ple s’ AS satisfying 7.fk = s".ck.

All the terms involving VS can be grouped to-

gether because they basically represent the ac-
tion that all the tuples containing s & V'S can
be deleted.
e Similarly, all the terms involving VR can be
grouped together because they represent the
action that all the tuples containing r& VR
can be deleted.
The term (ARX A S) involves only the two dif-
ferential files AR and AS. In other words, no
access to the source data is required.

The term (ARNS) involves two files, namely
the differential file AR and the source relation
S. To self-maintain DW views, we need to

avoid accessing any source relations.

Recall from Section 2 that when a tuple 7 is in-
serted info R, the database checks if there exists
a tuple sAsuch that s.ck = r.fk. If such s exists,
the insertion is successful and r is then recorded
in AR. Given that the search has been per-
formed, one can record the tuple s in a file called
RefFile. By so doing, the RefFile contains all those
tuples that are related to tuples in AR. In other
words, the RefFile contains all and only those tu-

174 ZYdEsAT

H143 H3%

ChE Hlole §HE JHxiE HolHolEeA Fef XEd

ples that could be joined with AR in the term
(ARNXS). Therefore, with this RefFile, the term
(ARNXS) can be rewritten as (ARNXRefFiler(S)),
which no longer requires an access to the source
data.

DEFINTION 1. Consider the situation where (i) a
SP] view 70c (RXS) is created in terms of fwo rela-
tions R and S, and (ii) a referential integrity con-
straint is imposed on R and S such that R.fk = S.ck
where R.fk denotes the foreign key of the referencing
relation R and S.ck denotes the candidate key of the
referenced relation S. Then, when a tuple r is success-
fully inserted into R (i.e., v is put in AR), a RefFile is
created to keep all and only those tuples (in S) that
are truly relevant to the update of the view. []

The following are some nice properties of

RefFilex(S):

® RefFiler(S) contains all and only those tuples
(in 5) that are truly relevant to joins containing
(ARNXS).

e RefFileg(S) can be created without any ex-
tra/significant cost (e.g., in searching S). One
can consider RefFilex(S) as a “by-product” of
checking referential integrity.

¢ The number of tuples in RefFiler(S) is bound-
ed above by the number of tuplesin AR. This
is due to the referential integrity constraints.
More specifically, because 7.fk = s.ck, many r
can reference one s. (Of course, each » can on-
ly reference one s.)

With RefFiler(S), Equation (2) can be sim-
plified to become the following:

v'=(R'MS)=v U (AR X RefFilex(S))
U (AR M 4S)- VR- VS 6]

where v = (RIX S) is the old view. Here, for sim-

plicity and readability, we abuse the notion of
“get difference” (-): The fourth and the fifth
terms (- VR) and (- v S) represent the deletion of
all the tuples containing *&VR and s& VS,
respectively.

It is important to note that, with this self-
maintainable approach, we are no longer to ac-
cess the source data. To elaborate, let us consider
all the terms listed in Equation (3). The first term
(R S} is the old DW view, The second term (AR
X RefFilex(S)) uses two differential files, namely
AR and RefFilex(S), where the former contains
all insertions into R and the latter is a referential
integrity differential file (RefFile) containing the
tuples in S that are relevant to AR. Regarding
the other three terms (ARNXAS), VR and VS,
they do not involve the source data; all they
need are the differential files, namely AR and 4
S (which contain the inserted tuples) as well as
VR and v5 (which contain the deleted tuples).
To summarize, all the terms in the Equation do
not require an access to source data (e.g., R or 5).
Consequently, with this approach, DW views
can be self-maintained.

EXAMPLE 1. Consider fwo relations R and 5: R (A,
B) = {<al, b1> <42, b2>}, S (B, O)= {<bl, c1>, <b2,
2>, <b3, 3>}, YR = {<a2, b2 >, vS ={<13, 3>},
AR ={<a3, b1>}, AS = {<b4, c4>} and RefFilex(S)
={<bl, c1>}. In this example, when the tuple <a3,
b1> is inserted into R, its corresponding tuple in S
(namely, <bl, c1>) is recorded in RefFiler(S). Note
that (AR X RefFilex(S)) gives the same result as (A
R X S); s0, by keeping RefFiler(S) one can compute
the join more efficient. To a greater extent, one can ef-
ficiently compute the new view (R’ X S') by using the
old view (R X S) with these differential files (AR, AS,
VR, VS and RefFiler(S)) according to Equation (3).

H 143 M3%

AAHBEAT 175

Ct3 oiole] |ME Jtx|= HlolEfgofsteL ol XEA

A

IV. DW Views Involving
Multiple Relations

In the previous section, we described how to
self-maintain a DW view involving two relations
R and S. Specifically, we showed how a new
DW view can be obtained by using only the old
view and differential files (AR, VR, AS, VSand
RefFiler(S)) that is, without accessing the source
data. Obviously, self-maintainability is not con-
fined to just two relations. In this section, we
show how to self-maintain a DW involving mul-
tiple relations.

Here, let us start with a data warehouse view
involving three relations (R, S and T). More spe-
cifically, we study the following three cases:

e Case A : A foreign key of S references both the
candidate keys of Rand T

o Case B : A foreign key of R references a candi-
date key of S, and a foreign key of S
references a candidate key of T

e Case C: The foreign keys of R and T reference
a candidate key of S

4.1 Data Warehouse Views Involving
Three Relations (Case A: R < S
- T)

In this section, we show how a new data
warehouse view containing a join over three re-
lations (say, R, S, and T) where a foreign key of
S references both candidate keys of R and T can
be computed from the old view and the “delta”
of the corresponding relations (i.e., without ac-
cessing base relations).

As we discussed in Section 3, a new/updated
relation R’ can be expressed in terms of the old re-
lation R, its insertion AR, and its deletion VR

(ie, R"=R- VR U AR). Similar comments can
be applied to Sand T. So, (R)4 §”)4 T") can be ex-
panded as follows:

v/ =(R XS MT)=R- VRUAR) X (S- VS
UAS) M (T-vTUAT) @)

This equation can be factored into =2
terms, Fortunately, we can reduce the number of
terms in the expression by grouping all terms in-
volving VR (and, similarly for those terms in-
volving VSas well as VT), as we did in Section
3.3. The resulting expression is as follows:

V=RNXSMT)URKXSKX AT) URNX ASXT)
URNX ASKX AT) U (ARXSXT)
U(ARMXSX AT) U (ARX ASKT)
U(ARNX ASNX AT)- VR-vS-VT)]

Among these 2°43=11 terms, some of the
joins can be eliminated. For example, the joins (R
M S AT), (ARX S X T)yand (AR X S X AT)
are not necessary because any joins involving
(AR X S)or (S X AT) would result in an emp-
ty relation. This is due to the referential integrity
constraints.

Because of referential integrity constraints,
whenever we insert a tuple s into the referencing
relation S, we check to see if there exists a corre-
sponding tuple in both referenced relations R and
T.So, we keep AS, RefFiles(R) and RefFiles(T). By
using these files, self-maintainability is achieved.
More explicitly, Equation (5) can be rewritten as
follows:

v'=(R' §'X T') = v U (RefFiles(R))X & SX RefFiles(T))
U (RefFiles(R)X ASM AT) U (4 RX ASXRefFiles
(T) U (AR X ASN AT)- VR-vS-vT (6)

where view = (R X S I T) is the old view. It is
important to note the following. We do not need

176 ZYHRSAT

H143 M3z

CtE djolEt fME Xl tojeigioistes Fof AEUM

to access the source data, and the new DW view
can be recomputed by using only differential
files (insertion files, deletion files and RefFiles).
To elaborate, the first term in Equation (6) is
view = (RX S X T) is the old view. the next four
terms use only differential DFs (i.e, AR, AS &
AT as well as RefFiles(R) & RefFiles(T)). The re-
maining three terms are deletion files, and they
do not require accessing the source data either.

EXAMPLE 2. Consider three relations R, Sand T:
R (B, D) ={<bl, d1>,<b2, d2>,<b3, d3>},S (A, B,C)
={<al, bl, c1>, <a2, b2, 2>}, T (G, E) = {<cl, e1>,
<c2, €2>, <c3, e3>}, VR = {<b3, d3>}, AR = {<b4,
d4>}, vS={<a2, b2, 2>}, AS={<a3,bl, 2>}, vT
= {<cB, e3>}, and AT= {<cb, 5>}, RefFiles(R) =
{<bl, d1>} and RefFiles(T') = {<c2, 2>}. In this ex-
ample, when the tuple <a3, bl, c2> is inserted into S,
its corresponding tuple in R (namely, <bl, d1>) is
kept in RefFiles(T). Similarly, the tuplein <c2,e2> &
T is kept in RefFiles(T). Note that the join (RefFiles(R)
X AS) gives the same result as the join (RIX AS); the
join (AS X RefFiles(T)) gives the same result as the
join (ASXT). So, by keeping RefFiles(R) and RefFiles
(T), one can compute the joins more efficient. As a re-
sult, one can self-maintain the DW views containing
R XS XT) U]

4.2 Self-maintenance for a Star Schema

Case A can be further generalized to handle
the self-maintenance of DW views containing
joins over several relations modeled in the form
of a star schema. In general, a star schema, which
is the most common modeling paradigm in the
data warehousing environment, contains a fact
table and several dimension tables. These tables

are connected in such a way that for each di-

mension table D;, there exists a foreign key of
the fact table F referencing a candidate key of D;.

It is not difficult to observe that Case A de-
scribed in Section 4.1 is just a special of this star
schema where § is the fact table and both R and
T are the dimension tables.

Given a star schema consists of many di-
mension tables (say, m dimension tables), a DW
view may contain a join on only some (but not
all) of these dimension tables. Without loss of
generality, let us assume that the DW view con-
tain a join on n dimension tables Dy, -+, D,
(where n < m). Then, the new DW view (F' X
D’y X -+«)X D’,) can be self-maintained as follows.
Recall that each relation/table R’ in the new DW
view can be expressed in terms of its old relation
R, its insertion AR, and its deletion VR, ie, R’ =
R-VRU AR. Therefore, a new view"™"™" = (F’

X D’; M -+ X D) can be expressed as follows:

V=(F XD1X - XDy)=(F- VFU oF)
N (D1 - VDI U ADl) M N (Dn' an
U ADy)]

which can be factored into 3" terms. As usual,

this number can be reduced by grouping the

“deletion” terms. As a result, the number of terms

in Equation (7) is reduced to (n+1) “deletion”

terms (i.e, one “deletion” term for each tables)
ntl e

plus 2" Yjoin” terms. Among these 2 “join”
terms, we observe the following:

e The term (F I D1 --- X Dy) represents the old
DW view.

» Any term containing (F) ADj), for1 <j <n,
results in an empty relation. There are 2" - 1
such terms, which contain F with at least one
AD]'.

e Theterm (AF X AD; -+ X ADy) involves on-

143 H3=

AAFHSAT 177

CtE oloje] #EE JIXlE HolefdolsteL w2l ALEA N

ly differential files AD;(for1 < j < n).

e For the remaining 2" - 1 terms, they contain A
F,D;and AD;(forsomel < i,j < n, wherei
j)- To achieve self-maintainability, we replace
each occurrence of D; by RefFile:(D;). As a re-
sult, we no longer need to access the source
data.

In summary, the new DW view can be com-
puted as follows:

V=(F XD XDy =(F XD XDy
U(U AF X RefFiles(D;))M AD)U(AF X AD;
M- X ADy)- VF-VDy-+--vDh §)

Since the star schema is the most common
modeling paradigm in the data warehousing en-
vironment, our proposed method described here
can be very beneficial.

EXAMPLE 3. Consider a DWview containing a join
over a fact table and two of the dimension tables in a
star schema. The new DW views can be expressed as
follows:

vV =FNXD1 XD,)=v U (RefFiler(D1) X AF
X RefFiles(D2)) U (RefFiler (D1))M AF X ADy)
U (ADl X AF X REfFZZEF(Dz)) U (ADl
MAFMAD,) - VE- vD;- VD, O

By replacing F, D1, D, with S, R, T, it is obuvious
that the above view is equivalent to that in Equation

(6).

4.3 Data Warehouse Views Involving
Three Relations (Case B: R— S
—T)

In this section, we show how a new DW view
containing a join over three relations (say, R, S
and T) where (i) a foreign key of R references a

candidate key of S and (ii) a foreign key of S
references a candidate of T can be expressed in
terms of the old view and the “delta” of the
corresponding relations (i.e., without accessing
base relations), and resulting in self-maintaina-
bility.

Similar to Case A, a new/updated view RN
§’ M T) can be expanded as follows:

v =(R-VR U AR) X (S§- VS U AS)
X (T-vT U AT) (10)

This expression can be factored into 3 =27
terms, and then reduced to 2° + 3 =11 terms by
grouping all the “deletion” terms. A careful anal-
ysis reveals that, among these 11~terms, some of
the joins can be eliminated. For example, the joins
(RXSX AT),(RX ASKT), (RX ASNK AT)
and (AR X S X AT) are not necessary because
any joins involving (R X AS)or (S X AT) would
result in an empty relation. This is due to the ref-
erential integrity constraints.

Because of referential integrity constraints,
whenever we insert a tuple into the referencing
relation S, we check to see if there exists a corre-
sponding tuples in both referenced relations R
and T. So, we can easily create RefFiles(R) and
RefFiles(T). By using these files, Equation (10) can

be rewritten as follows:

v’=v U (AR X RefFiler(S) XM T) U (AR X AS
X RefFiles(T)) - VR- vS- VT (17)

However, there is a term in this expression,
namely (ARNX RefFiler(S) X T)), involves T. To
ensure self-maintainability, we introduce a Con-
Diffile.

Basically, when a tuple r is inserted into R, the
database checks to see if there exists a relevant
tuple s & S such that r.fk = s.ck. If s exists, we

178 AGHESHT

H143A H3=

CHS BloJ8 XS JIXE dolsloistea Hel XgHa

store 7 in AR and s in RefFiler(S). Here, we take
one additional step. Whenever, we put s in
RefFiler (S), we search for its relevant tuple t& T.
(Due to referential integrity constraints, there
must exist ¢ & T such t.ck = 5.fk.) Notice that this
search can be done very efficiently because it is
an equality search applied to the candidate key
attribute (of T). Once such T is found, we put T
in LiDiFg(T).

DEFINITION 2. Consider the situation where (i) a
SPJ view tAcC (R X S X T) is created in terms of
three relations R, S and T, and (ii) a referential in-
tegrity constraint is imposed on R, S and T such that
Rifk = S5.ck and S.fk = T.ck where fk denotes the for-
eign key and ck denotes the candidate key. Then,
when a tuple v is successfully inserted into R, we cre-
ate RefFiler (S). We perform one extra step: For each s
inserts into RefFiler (S), we create a linked differ-
ential file LiDiFr(T') to keep all and only those tu-
ples (in T) that are truly relevant to s & RefFilex(S).
Here, s.ck =r.fk.]

There are some nice property of this LiDiF, as
described below:

@ LiDiFg(T) contains all and only those tuples
(in T) that are relevant to the join (ARNX
RefFiler (S) X T))

@ LiDiFR(T) can be created with a minimum
cost because the search for relevant T to be put
in LiDiFg(T) can be done very efficiently.

@ The number of tuples in such a LiDiFg(T) is
bounded above by the number of tuples in
RefFiler(S), which in turn is bounded above
by the number of tuples in AR. This is due to
the referential integrity constraints. More
specifically, because r.fk = s.ck, many r can

reference one s but each r can only reference
one s. Similarly, because s.fk = t.ck, many s
can reference one Thut each s can only ref-

erenceone T.

With LiDiFr(T) storing the relevant tuples in T,
Equation (11) can be modified to become to the
following, which achieves self-maintainability
(i.e., no access of base relations).

v’ =v U (AR X RefFiler (S) X LiDiFx(T)) U (AR
X AS M RefFiles(T)) - VR- v5- VT (12)

View can be recomputed by using only differ-
ential files (insertion files, and/or deletion files)
and RefFiles. To elaborate, the first term in the
above expression is view = R X S X T is the old
view. the next four terms use RefFiles with AR or &
S. The remaining terms are deletion only, and
they do not require accessing the source data
either.

EXAMPLE 4. Consider three relations R, 5 and T:
R (A B) ={<al, b1> <a2, b2>}, S (B, O)= {<b], c1>,
<h2, ¢2>, <b3, (3>,<c3,d3>}, VR={<a2, 12>}, v
S =[<b3, (3>}, AR = {<a3, b1>}, AS = {<b4, 4>},
RefFileg(S) = {<bl, c1>}, LiDiFr(T) = {<c1, d1>},
and RefFiles(T) = {<c2, d2>}. In this example, when
the tuple <a7, b1> is inserted into R, its correspond-
ing tuple in S (namely, <bl, c1>) is kept in RefFilex
(S). The <c1, d1> & T is then recorded in LiDiFx(T).
Note that the join (AR X RefFiler (S) X LiDiFr(T))
gives the same result as the join (AR X S X T); the
join (&S W RefFiles(T)) gives the same result as the
join (AS X T). So, by keeping these differential files
(namely, RefFileg (S), LiDiFr(T) and RefFiles(T), one
can compute the joins more efficient. As a result, one
can self-maintain the DW views containing (R' X S’
XT) L[]

H 14 HM3=

ZEFEEAT 179

CHE dole] FXS JHXj& dlojefflofstea wol AEd M

4 4 Self-Maintenance of Data Warehouse
Views for a Snowflake Schema

Case B can be further generalized to handle
the self-maintenance of data warehouse views
containing joins over several relations modeled
in the form of a snowflake schema. is a variant
of the star schema model; it forms a graph sim-
ilar to a snowtflake-shaped. Specifically, it con-
tains a fact table and several dimension tables.
These tables are connected in such a way that for
each dimension table D;, there exists a foreign
key of either the fact table F or another dimen-
sion table D; referencing a candidate key of D;.

The key difference between the star schema
and the snowflake schema is the addition of di-
mension tables that are referenced by other di-
mension tables. In this section, we first generalize
Case B to handle the path that F references D;,
which in turn references D;. Once the general-
ization is established, the technique can be com-
bined with that for the star schema (see Section
42)to provide the self-maintainability of DW
views containing relations in a snowflake schema.

We start with v’ = (D1 X -+ X D’,), which can
be factored into 3" terms. By grouping the
“deletion” terms, we end up have 2" + n terms.
Among these terms, we observe the following:

e 1 of these terms represent the deletion of n
tables.

o The term (F X Dy --+ i D,) is the old DW view

* Any term containing (D; X AD)), for1 < i<j
< n, results in an empty relation. There are 2" -
n - 1 such terms.

e Theterm (AD; X -+ X ADy) involves only A
Dj(for1 <j < n).

e For the remaining n - 1 terms, they contain A

D; and D; (for 1 <i<j<n). To achieve
self-maintainability, we replace occurrence of
D; by RefTile and LiDiF. As a result, we no lon-
ger need to access the source data.

Since the star schema and the snowflake sche-
ma are two common modeling paradigms in the
data warehousing environment, our proposed
method described here can be very beneficial.

4.5 Data Warehouse Views Involving
Three Relations (Case C: R— S
—T)

In this section, we show a different case. Spe-
cifically, we show how a new DW view involv-
ing three relations (say, R, S and T) where for-
eign keys of both R and T reference a candidate
key of S can be expressed as an aggregate view
from old view with the delta of the correspond-
ing relations (i.e, without accessing base rela-
tions), and resulting in self-maintainability. Si-
milar to previous two cases (Cases A and B), we
start with 3> = 27 terms, which can be reduced to
2°+3=11 terms. A careful analysis on these
terms reveals that some of the terms can be
eliminated. For example, the joins (R X AS X
T), RX ASX AT) and (ARX ASNXT) are
not necessary because any joins involving (RIX
AS) or (ASNX T) would result in an empty
relation. This is due to the referential integrity
constraints. Because of the referential integrity
constraints, whenever we insert a tuple into the
referencing relation R or T, we check to see if
there exists a corresponding tuples in the refer-
enced relation S. So, we keep AR, AT, RefFiler
(S) and RefFiler(S). By using these files, the new
DW view can be rewritten as follows:

180 HYHESAHT

H143 HM3%

ci% dolel YHe JixlE HolEgolstea Rel ABAA

v'=v U (R X RefFiler(S)) AT) U (AR X RefFilex
(8) X T) U (AR X [RefFiler (S) N RefFilex(S)]
X AT)- VR-vS-vT (13)

However, there is two terms in Equation (13),
namely (RRefFiler (S)I4 ATy and (ARNX RefFiler
{5) X T), involve the source data R and T. To en-
sure self-maintainability, we introduce a ReDiFile.
Basically, when a tuple r is inserted into R, the da-
tabase checks to see if there exists a relevant tuple
s € Ssuch that r.fk = s.ck. If s exists, we store 7 in
AR and s in ReDiFg(5). Given that there are two
relations referencing S, we only know which tu-
plesin R (or AR) references the tuples in ReDiFx
(5), but we do not know which tuples in T refer-
ences the tuples in ReDiFr(S). Here, we take one
additional step to get this information. Whenever,
we put 5 in ReDiFr(S), we search for its relevant
tuple £ in T (i.e, find ¢ & T such that t.fk = s.ck).
Such a search is similar to that of finding the tu-
ples in T that reference s when one wants to delete
s for the on delete cascade, on delete set NULL
and on delete set default options). If such T is
found, we put T in BkDiFx(T). There is a nice
property of this BkDiF:

D BkDiFg(T) contains all and only those tuples
that are relevant to the join (AR X ReDiFx(5)
b4 T). Similarly, we can create BKDiFr(R) for
dealing with the join (R} ReDiFr(S) X ATY).
With the use of BKDiFr(T} and BkDiFr(R),
which store the relevant tuples in T and R,
respectively. Equation (13) can be modified
to become to the following to achieve self-
maintainability (i.e., no access of base rela-
tions).

o' = oU(ARK ReDiFg(S)M BkDiFgs(T)) U (LiDiFrs

(R) R M ReDiFg(S) M AT)U(AR X AS
X ReDiFs(T)) - VR- vS- 7T (14)

EXAMPLE 5. Consider three relations R, Sand T: R
(A, By={<al,cl><a2,c2>), S (C, D) = {<cl,d1>, <2,
d2>,<c3,d3>}, T(B, C) = {<bl, 1>, <b2, 2>}, VR =
{<a2, c2>}, AR ={<a4, 1>}, vS={<c3,d3>}, AS=
{<c5, d5>}, VT = {<b2, 2>}, AT = {<b5, 2>},
ReDiFr(S) ={<cl, d1>}, BkDiFx(T) = {<bl, c1>},
BkDiF¢(R) = {<a2, ¢2>}, and ReDiFr(S) = {<c2, d2>}.
Ol

4.6 Self-Maintenance of Data Warehouse
Views for a Galaxy Schema

The above case can be further generalized to
handle the self-maintenance of data warehouse
views that are modeled in the form of a fact con-
stellation schema (or a galaxy schema). In this
schema, multiple fact tables share dimension
tables. This situation may occur in some sophisti-
cated applications.

In this section, we first generalize the three-re-
lation case to handle the path that F references D,
which in turn references Dj. Once the general-
ization is established, the technique can be com-
bined with that for the star schema to provide the
self-maintainability of DW views modeled in a
snowflake schema.

Here, we assume that the join involves one di-
mengion table and # fact tables. Similar to pre-
vious cases, we analyze 2" terms:

e The term (D X Fy -+ X Fu) is the old DW view

¢ Any term containing (AD M F), for1 <j < n,
results in an empty relation. There are 2" - 1
such terms, which contain AD with at least
one F;.

¢ The term (AD X AF; -+ X AF,) involves on-
ly AF (for1 < j <).

¢ For the remaining 2" -1 terms, they contain D,
Fiand AF; (forsomel < i, < n, wherei # j).

H14d HM3Z

dIF 2T 181

Ct3 Hlolef M S 71x|= HlolEfglofate2 ol XEHL

To achieve self-maintainability, we replace
each occurrence of F; by BkDiF. As a result, we
no longer need to access the source data.

Since the star schema, the snowflake schema,
and the galaxy schema are common modeling
paradigms in the data warehousing environment,
our proposed method described here can be very
beneficial.

In the previous section, we showed how we
self-maintain data warehouse views involving
three relations. In real-world applications, it is
not unusual that more than three relations as in-
volved (and connected). Here, we show how a
new data warehouse view involving k relations
(say, Ry, -+, Ry), where a foreign key of R; refer-
ences a candidate key of Ru1 (for all i from 1 to
k-1), can be expressed as an aggregate view from
old view with the delta of the corresponding rela-
tions (i.e., without accessing base relations), and

resulting in self-maintainability.

V. Performance Analysis

The following values are assigned to the pa-
rameters for the analysis. The block size is
generally assumed to be 4,000 bytes, and the
I/O cost 25 ms/block. The record sizes of the
base tables are assumed to be the same as 200
bytes and 220 bytes, respectively. In the de-
leted case, only the identifier will be sent, i.e.,
20 bytes. The cardinalities of the base tables
are assumed to be examined from 1,000 and 10
Tera tuples respectively, and the size of the
differential file is varied in the experiment. The
communication speed varies from a very low
case to a high -speed case 100Kbps~10Mbps.
Tuples are filtered from a no screening case

(1.0) and a highly screened case (0.001). Ac-
cording to the above parameters and cost func-
tions presented in Appendix, the following four
methods are analyzed: (1) the base table meth-
od (Base), (2) the base table incremental meth-
od (Baselnc), (3) the auxiliary view .method
(AV), and (4) the differential file method (DF).

14000

1zooo —0—Base
1oooop —-8
. 8000 \ AV
8 o000 \\ ~ —X—0OF

A\
200> b\\%

100K 400K 700K M M ™ 10M

communication speed

<Figure 2> Cost traverses of Base, Baselnc, AV,
and ‘DF with changing communication

speed
9000
8000+—] —0—DF //D
—{-Av
70007 _A— Baselnc
60001 —¥—Base
.. 5000+——— = - ,/U ’
§ 4000 N T N I‘\
£
o]
2000 //v
1000
Nr—
0.01 01 04 07 1
screen factor

<Figure 2> Cost traverses of Base, Baselnc, AV,
and DF method with changing screen
factors

A total of eight figures are presented with re-
spect to various criteria. <Figure 1> and <Figure
2> show that the total costs of the three methods
are strongly dependent on both the selectivity
(with the screen factor) and the communication
speed. <Figure 1> represents that the costs of all

182 AYFESAT

H 143 H3=

chE tole] fMg Jixie dlolEgofsiea 7ol AE2H

methods are decreased along with communica-
tion speed, and the cost of DF is consistently less
than .10 of base method in any communication
speed. This shows that the size of the data per
se is the most critical factor. If the tuples are fil-
tered highly {up to about 0.01), as in <Figure 2>,
the Base method and the Baselnc method are
less advantageous than the DF method or the
AV method.

80
80
70 \\ Z/‘
80
50 —s— bTotalCost/dTotalCost
40 —e=—iBaseTotalCost/dTotalCost /
30 //
20 —
10 .

0 — —_

1 10 100 1000 10000 100000

<Figure 3> Cost Ratios of Base method and
Baseinc method over DF method
with increasing view size

100000 [

—w— dTotalCost
80000 —8— iBaseTotaiCost
e BTotalCost

80000
[:

40000 ° e S —

20000

0 ——

100K 400K 700K M 4M ™ 10m

<Figure 4> Cost Ratios of Base and Baselnc, and
DF method with increasing communication
speed

<Figure 3> and <Figure 4> represent the cost
ratios of Base method and Baselnc method over
DF method with respect to increasing view sizes.
Basically the Base method is unwavering accord-

ing to the changes of DF, because it does not
use the DF. But the other methods are changed
and it is natural that the DF method is the most
highly affected. We allow an apparent dis-
advantage to the DF method if we treat the DF
as individual tuples twice at a fime. Since the
tuple in the DF has additional attributes such
as operation and sysdate, an additional oper-
ation is required to merge a differential tuple
with the relevant base relation [Khan and Mott,
2002; Liu et al., 1998]. It can be said that the DF
method scheme is preferable to the other meth-
ods if the size of the DF is about .70 less than
that of the base table. We can expect that the
DF method is appropriate to a DW environment
in its huge data volume. As for the quantity of
the object, it can be concluded that the sheerer
the volume, the more advantageous is the DF
method.

VI. Conclusion

DW views provide an efficient access to in-
formation that is normally integrated from vari-
ous sources. As changes are made to the source
data, the corresponding DW views may be out-
dated. Hence, the maintenance of DW views is
crucial for the currency of information. In this pa-
per, we proposed a novel method to self-maintain
the DW views that contain a SPJ view over multi-
ple relations. Specifically, we exploit the refer-
ential integrity constraints imposed on the rela-
tions in the underlying databases (or data sour-
ces) because these constraints are the most funda-
mental ones that any relational databases should
satisfy. With our proposed method, DW views
can be updated by using only the old views and
the differential files such as insert/ delete differ-

H143 ®3=

ZHYEHsT 183

=

o3 Hlolef ¥HE 7ixl= dlolefgoiates 7ol A2H

ent files (AR, VR), referential integrity differ-
ential files (RefFile), linked differential files
(LiDiF), and backward-linked differential files
(BKDiF), that keep the truly relevant tuples in the
delta. This method avoids accessing the under-

lying databases in that the method achieves
self-maintainability even in preparing auxiliary
information. The proposed method can be appli-
cable to the self-maintenance of DW views that

contain joins over multiple sources.

References

[1] Babcock B., Babu S., Datar M., Motwani R,
Widom J., "Models and Issues in Data Stream
Systems," Proceedings of the ACM PODS,
2002, pp. 1-16.

[2] Berndt D., Hevnera A. and Studnicki J.,
"The Catch data warehouse: support for
community health care decision-making,"
Decision Support Systems, Vol. 35, No. 3, 2003,
pp. 367-384.

[3] Blakeley J., Larson P. and Tompa P., "Effi-
ciently updating materialized views," Proc-
eedings of the ACM SIGMOD, 1986, pp.
61-71.

[4] Ceri S, Cochrane R. J. and Widom J., "Prac-
tical Application of Triggers and Con-
straints: Successes and Lingering Issues,"
Proceedings of the Very Large Data Bases, 2000,
pp. 254-262.

[5] Chari K., "Model composition in a distri-
buted environment," Decision Support Sys-
tems, Vol. 35, No. 3, 2003, pp. 399-413.

[6] Espil M. and Vaisman A., "Revising ag-
gregation hierarchies in OLAP: a rule-based
approach," Data and Knowledge Engineering,
Vol. 45, No. 2, 2003, pp. 225-256.

[7] Griffin T. and Libkin L., "Incremental main-
tenance of views with duplicates," Proceed-
ings of the ACM SIGMOD, 1995, pp. 328-339.

(8] Griffin T., Libkin L. and Trickey H., "An im-
proved algorithm for the incremental re-

computation of active relational expréssions,"
IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 3, 1997, pp. 508-511.

[9] Gupta H. and Mumick I S., "Selection of
views to materialize under a maintenance
cost constraint," Proceedings of the ICDT,
1999, pp. 453-470.

[10] Hyun N., "Multiple-view self-maintenance
in data warehousing environments," Pro-
ceedings of the Very Large Data Bases, 1997,
pp. 26-35.

[11] Khan S. and Mott P. L., "LeedsCQ: a scal-
able continual queries system," Proceedings
of the DEXA, 2002, pp. 607-617.

[12] Lakshmanan L., Pei J. and Zhao, Y., "QC-
Trees: An Efficient Summary Structure for
Semantic OLAP," Proceedings of the ACM
SIGMOD, 2003, pp. 64-75.

[13] Laurent D., Lechtenbrger J., Spyratos N.
and Vossen G. "Monotonic complements
for independent data warehouses," The VLDB
Journal, Vol. 10, No. 4, 2001, pp. 295-315.

[14] Lechtenborger J. and Vossen G., "On the
computation of relational view comple-
ments," ACM TODS, Vol. 28, No. 2, 2003,
pp. 175-208.

[15] Lechtenborger J., "The impact of the con-
stant complement approach towards view
updating," Proceedings of the ACM PODS,
2003, pp. 49-55.

184 AJyEsATF

H148 3=

CIE dlolel #Ag 71X Holefglolstea Rl A8dd

[16] Lee Wookey and Geller]., "Semantic Hi-
erarchical Abstraction of Web Site Struc-
tures for Web Searchers," Journal of Research
and Practice of Information Technology, Vol.
36, No. 1, 2004, pp. 71-82.

[17] Lee Wookey, Hwang Y., Kang S., Kim S,
Kim C. and Lee Y., "Self-maintainable data
warehouse views using differential files,"
Proceedings of the DEXA, 2002, pp. 216-225.

[18] Liu L, Pu C, Tang W, Buttler D,, Biges J.,
Zhou T., Benninghoff P., Han W. and Yu
E., "CQ: a personalized update monitoring
toolkit," Proceedings of the ACM SIGMOD,
1998, pp. 547-549.

[19] Markowitz V., "Safe referential integrity
and null constraint structures in relational
databases," Information Systems, Vol. 19, No.
4, 1991, pp. 359-378.

[20] Mohania M. and Kambayashi Y., "Making
aggregate views self-maintainable," Data
and Knowledge Engineering, Vol. 32, No. 1,
2000, pp. 87-109.

[21] Nematia H., Steiger D,, Iyer L. and Herschel
R, "Knowledge warehouse: an architectural
integration of knowledge management, de-
cision support, artificial intelligence and da-
ta warehousing," Decision Support Systems,
Vol. 33, No. 2, 2002, pp. 143-161.

[22] Park C., Kim M. and Lee Y., "Finding an
efficient rewriting of OLAP queries using
materialized views in data warehouses,"
Decision Support Systems, Vol. 32, No. 4,
2002, pp. 379-399. ,

[23] Piccinelli G., Finkelstein A. and Costa T,,
"Flexible B2B processes: the answer is in the
nodes," Information and Software Technology,
Vol. 45, No. 15, 2003, pp. 1061-1063.

[24] Pourabbas E. and Shoshani A., "Answering

Joint Queries from Multiple Aggregate OLAP
Databases," Data Warehouse and Knowledge
Discovery, 2003, pp. 24-34.

[25] QuassD., Gupta A., Mumick 1. and Widom
J., "Making views self-maintainable for data
warehousing," Proceedings of the PDIS, 199,
pp. 158-169.

[26] Quian X. and Wiederhold G., "Incremental
recomputation of active relational expre-
ssions," IEEE Transactions on Knowledge and
Data Engineering, Vol. 3, No. 3, 1991, pp.
337-341.

[27] Sifer M., "A visual interface technique for
exploring OLAP data with coordinated di-
mension hierarchies," Proceedings of the
CIKM, 2003, pp. 532-535.

[28] Sismanis Y., Deligiannakis A., Kotidis Y.
and Roussopoulos N., "Hierarchical dwarfs
for the rollup cube," Proceedings of the DOLAP,
2003, pp. 17-24.

[29] Theodoratos D. and Bouzeghoub M. "A
general framework for the view selection
problem for data warehouse design and
evolution," Proceedings of the DOLAP, 2000,
pp. 1-8.

[30] Theodoratos D., Ligoudistianos S. and Sellis
T. K., "View selection for designing the
global data warehouse," Data and Knowledge
Engineering, Vol. 39, No. 3, 2001, pp. 219-
240.

[31] Trujillo J., Lujan-Mora S. and Song I,
"Applying UML For Designing Multidi-
mensional Databases And OLAP Applicati-
ons," Advanced Topics in Database Research,
Vol. 2, 2003, 13-36.

[32] Wixom B. and Watson H., "Data Warehous-
ing and Business Intelligence,” Minitrack
Introduction, Proceedings of the HICSS, 2004.

H14d ®3=

AGPEatT 185

FHA|

chE ololef dHE Jixl= HlolEfoiate2 wo| A2WL

[33] Zhuang S., Fong S. and Chan S., "Data
Mining on Users’ Access Trials for Web
Business Intelligence," Neural Networks and
Computational Intelligence, 2003, pp.13-18.

[34] Zhuge Y., Garcia-Molina, Hammer H. J. and
Widom J., "View maintenance in a ware-
housing environment," Proceedings of the
ACM SIGMOD, 1995, pp. 316-327.

186 ZYdRseT

H 14 H3%

chE dole| AME Ztx|E Holedoisiea 7ol Xad

¢ MRS @

0]¢-7] (Lee, Wookey)

Agrista AgEatael A gl A 2 uRlEel g A5S F A
AFEAR Rasre AAFoH FRAANTY AP AIhUBC002
~2003)0) W FE ek 28 =F-L Journal of Database Systems, Int'l
Journal of Computer Information Systems, Journal of Research and Practice of
Information Technology 5} ZAAY AGRRAAT, AYA}=EA,
Fgugstsh=iA 5 A AXHRH, F2 A7 BEkEE |
o)E] 8-~ 2 dlolEl a8, Web Structure Mining, 712]1 Business
Model %o|th

& 0| =22 20044 19 262 TR0 1A £HE HA 20044 78 219 AMBH AT

H143 ®3= AIHEEAT 187

