DOI QR코드

DOI QR Code

Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum f. sp. ciceri

  • Saikia, Ratul (Laboratory of Applied Mycology, Centre of Advanced Study in Botany, Banaras Hindu University) ;
  • Kumar, Rakesh (Laboratory of Applied Mycology, Centre of Advanced Study in Botany, Banaras Hindu University) ;
  • Singh, Tanuja (Glyco-Immunochemistry Research Lab., Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University) ;
  • Srivastava, Alok K. (Laboratory of Microbial Biotechnology, P G Department of Botany, SMMT P G College) ;
  • Arora, Dilip K. (National Bureau of Agriculturally Important Microorganisms) ;
  • Lee, Min-Woong (Department of Biology, Dongguk University)
  • 발행 : 2004.03.31

초록

Pseudomonas fluorescens 1-94 induced systemic resistance in chickpea against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri by the synthesis and accumulation of phenolic compounds, phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) proteins(chitinase, $\beta$-1,3-glucanase and peroxidase). Time-course accumulation of these enzymes in chickpea plants inoculated with P. fluorescens was significantly(LSD, P=0.05) higher than control. Maximum activities of PR-proteins were recorded at 3 days after inoculation in all induced plants; thereafter, the activity decreased progressively. Five PR peroxidases detected in induced chickpea plants. Molecular mass of these purified peroxidases was 20, 29, 43, 66 and 97 kDa. Purified peroxidases showed antifungal activity against plant pathogenic fungi.

키워드

참고문헌

  1. Beffa, R., Martin, H. V. and Pilet, P. E. 1990. In vitro oxidation of indole-acetic acid by soluble auxin-oxidases and peroxidase from maize roots. Plant Physiol. 94: 485-491 https://doi.org/10.1104/pp.94.2.485
  2. Benhamou, N., Gagne, S., Quere, D. L. and Debhi, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90: 45-56 https://doi.org/10.1094/PHYTO.2000.90.1.45
  3. Berger, L. K. and Reynolds, D. M. 1958. The chitinase system of a strain of Streptomyces grisens. Biochem. Biophys. Acta. 29: 522-534 https://doi.org/10.1016/0006-3002(58)90008-8
  4. Boyd, L. A., Smith, P. H. and Brown, J. K. M. 1994. Molecular and cellular expression of quantitative resistance in barley to powdery mildew. Physiol. Mol. Plant Pathol. 45: 47-58 https://doi.org/10.1016/S0885-5765(05)80018-9
  5. Bradley, D. J., Kjellbom, P. and Lamba, C. J. 1992. Elicitor- and wound-induced oxidation cross-linking of a plant cell wall proline- rich protein L a novel, rapid defense response. Cell 70: 21-30 https://doi.org/10.1016/0092-8674(92)90530-P
  6. Chittoon, J. M., Leach, H. E. and White, F. F. 1997. Differential induction of peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 10: 861-871 https://doi.org/10.1094/MPMI.1997.10.7.861
  7. Dickerson, D. P., Pascholati, S. E, Hagerman, A. E., Butler, L. G. and Nicholson, R L. 1984. Phenylalanin ammonialyase and hdroxy cinnamate: CoA ligase in maize mesocotyls inoculayted with Helminthosporium carbonum. Physiol. Plant Pathol. 25: 111-123 https://doi.org/10.1016/0048-4059(84)90050-X
  8. Gasper, T., Penel, C., Thorpe, T. and Greppin, H. 1982. Peroxidases: A survey of their biochemical and physiological roles in higher plants. University of Geneva, Geneva, Switzerland
  9. Goldberg, R., Imberty, A., Liberman, M. and Prat, R. 1986. Relationships between peroxidatic activities and cell wall plasticity. Pp. 208-220. In: Greppin, H., Penel, C. and Gaspar, T. Eds. Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, Switzerland
  10. Graham, T. L. and Graham, M. Y. 1991. Cellular coordination of molecular responses in plant defense. Mol. Pl. Microbe Interact. 4: 415-422 https://doi.org/10.1094/MPMI-4-415
  11. Grisebach, H. 1981. Lignins. Pp. 457-478. In: Conn, E. E. Ed. The biochemistry of plants. Academic Press, New York
  12. Hammerschmidt, R, Nuckles, E and Kuc, J. 1982. Association of enhance peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20: 73-82 https://doi.org/10.1016/0048-4059(82)90025-X
  13. Han, D. Y., Coplin, D. L., Bauer, W. D. and Hoitink, H. A. J. 2000. A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology 90: 327-332 https://doi.org/10.1094/PHYTO.2000.90.4.327
  14. Haran, S., Schickler, H., Pe'er, S., Logemann, S., Oppenheim, A. and Chet, I.1996. Increased constitutive chitinase activity in the transformed Trichoderma harzianum. Biol. Control 3: 101-103
  15. Kim, S., Ahn, I. P., Park, C, Park, S. G., Park, S. Y., Jwa, N. S. and Lee, Y. H. 2001. Molecular characterization of the eDNA encoding an acidic isofonnof PR-protein in rice. Mol. Cells 11: 115-121
  16. Kim, Y. J. and Hwang, B. K. 1997. Isolation of a basic 34 kilodelton ,$\beta$-1, 3-glucanses with inhibitory activity against Phytophthora capsici. Physiol. Plant Pathol. 45: 195-209
  17. Mathivanan, N., Kabilan, V. and Murugesan, K. 1997. Production of chitinase by Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Indian J. Exp. Biol. 35: 890-893
  18. Mathivanan, N. and Kabilan, V.. 1998. Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Can. J. Microbiol. 44:' 646-651
  19. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA-gene and of pyroverdine production. Phytopathology 84: 139-146 https://doi.org/10.1094/Phyto-84-139
  20. Meena, B., Ramamoorthy, V., Marimuthu, T. and Velazhahan, R 2000. Pseudomonas fluorescens mediated systemic resistance against late leaf spot of groundnut. J. Mycol. Pl. Pathol. 30: 151-158
  21. Mehdy, M. C. 1994. Active oxygen species in plant defenses against pathogens. Plant Physiol. 105: 467-472
  22. Mohan, R. and Kolattukudy, R. E. 1990. Differential activation of expression of suberization-associated anionic peroxidase gene innear-isogenic resistance and susceptible tomato lines by elicitors Verticillium albo-atrum. Plant Physiol. 92: 276-280 https://doi.org/10.1104/pp.92.1.276
  23. Pan, S. Q., Ye, X. S. and Kuc, J. 1991. A technique for detection of chitinases, ,$\beta$-1, 3-glucanases and protein patterns, after single separation using PAGE or isoelectric focusing. Phytopathology 81: 970-974 https://doi.org/10.1094/Phyto-81-970
  24. Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E. and van Pelt, J. A. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  25. Punja, Z. K. and Zhang, Y. Y. 1993. Plant chitinases and their roles in resistance to fungal diseases. J. Nematol. 25: 526-540
  26. Ramamoorthy, V. and Samiyappan, R. 2001. Induction of defense-related genes in Pseudomonas fluorescens-treated chilli plants in response to infection by Colletotrichum capsici. J. Mycol. Pl. Pathol. 31: 146-155
  27. Ramanathan, A., Vidhyasekaran, P. and Samiyappan, R. 2001. Two pathogenesis-related peroxidases in greengram (Vigna radiata (L.) wilczek) leaves and cultured cells induced by Macrophomina phaseolina (Tassi) Goid. and its elicitor. Microbiol. Res. 156: 139-144
  28. Rasmussen, J. B., Smith, J. A., Williams, S., Burkhart, W., Ward, E., Somerville, S. C., Ryals, J. and Hammerschmidt, R 1995. cDNA cloning and systemic expression of acidic peroxidase associated with systemic acquired resistance to disease in cucumber. Physiol. Mol. Plant Pathol. 46: 389-400 https://doi.org/10.1006/pmpp.1995.1030
  29. Raupach, G. S., Liu, L., Murphy, J. E, Tuzum, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 80: 891-894 https://doi.org/10.1094/PD-80-0891
  30. Ray, H. and Hammerschmidt, R. 1998. Responses of potato tuber to infection by Fusarium sambucinum. Physiol. Mol. Plant Pathol. 53: 81-92 https://doi.org/10.1006/pmpp.1998.0165
  31. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  32. Saikia, R., Singh, T., Kumar R, Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158: 871-881
  33. Schmid, P. S. and Feucht, W. 1980. Tissue-specific oxidation browning of polyphenols by peroxidases in cherry shoots. Gartenbauwissenschaft 45: 68-73
  34. Srivastava, A. K., Singh, T., Jana, T. K. and Arora, D. K. 2001. Induced resistance and charcoal rot in Ciceri arietinum (chickpea) by Pseudomonas fluorescens. Can. J. Bot. 79: 787-795 https://doi.org/10.1139/cjb-79-7-787
  35. Sticher, L., Mauch-Mani, B. and Metraux, J. P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35: 235-270 https://doi.org/10.1146/annurev.phyto.35.1.235
  36. Thordal-Christensen, H., Brandt, J., Cho, B. H., Rasmussen, S. K., Gregersen, P. L., Smedegaard-Petersen, V. and Collinge, D. B. 1992. eDNA cloning and characterization of two barley peroxidase transcripts induced differently by the powdery mildew fungus Erysiphe graminis. Physiol. Mol. Plant Pathol. 40: 395-409 https://doi.org/10.1016/0885-5765(92)90031-P
  37. van Loon, L. C. and Van Strien, E. A. 1999. The families of andpathogenesis-related proteins. Plant Pathol. 55: 85-97
  38. van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-485 https://doi.org/10.1146/annurev.phyto.36.1.453
  39. van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. 1994. Recommendation for naming plant pathogenesis related proteins. Plant Mol. Biol. Rep. 12: 245-264 https://doi.org/10.1007/BF02668748
  40. Xue, L., Charest, P. M. and Jabaji, S. H. 1998. Systemic induction of peroxidases,$\beta$-1,3-glucanase, chitinase and resistance in bean plants by binucleated Rhizoctonia species. Phytopathology 88: 350-363
  41. Ye, X. S., Pan, S. Q. and Kuc, J. 1990. Activity, isoenzyme pattern and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mould (Peronospora tabacina) and tobacco mosaic virus. Phytopathology 80: 1295-1299 https://doi.org/10.1094/Phyto-80-1295
  42. Yi, S. Y. and Hwang, B. K. 1996. Differential induction and accumulation of $\beta$-1,3-glucanase and chitinase isoforms in soybean hypocotyls and leaves after compatible and incompatible infection with Phytophthora megasperma f. sp. glycinea. Physiol. Mol. Plant Parhol. 48: 179-192 https://doi.org/10.1006/pmpp.1996.0016
  43. Young, S. A., Guo, A., Guikema, J. A., White, F. and Leach, J. E. 1995. Rice cationic peroxidase accumulating in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol. 107: 1333-1341 https://doi.org/10.1104/pp.107.4.1333

피인용 문헌

  1. Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.) vol.36, pp.12, 2016, https://doi.org/10.1007/s11032-016-0589-1