DOI QR코드

DOI QR Code

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung (Department of Satellite Information Sciences, Pukyong National University) ;
  • Choi Chul-Uong (Department of Satellite Information Sciences, Pukyong National University) ;
  • Suh Yong-Cheol (Department of Satellite Information Sciences, Pukyong National University)
  • 발행 : 2004.10.01

초록

Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

키워드

참고문헌

  1. Buschmann , C. and E. Nagel, 1993. In vivo spectroscopy of internal optics of leaves as basis for remote sensing of vegetation, International Journal of Remote Sensing, 14(4): 711-722
  2. Clive S. Fraser, 1997. Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing, 52(4): 149-159
  3. Cramer, M., D. Stallmann, and N. Haala, 1997. High precision georeferencing using GPS/INS and image matching, Proc. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, pp.453-462
  4. Cramer, M., D. Stallmanl, and N. Halla, 2000. Direct Georereferencing Using GPS/Inertial Exterior Orientations for Photograrnmetric Applications, ISPRS Vol. XXXIII Part B3/l, pp.198-206
  5. Ackermann, F. and H. Schade, 1993. Application of GPS for Aerial Triangulation, Photogrammetiric Engineering & Remote Sensing, 59(11): 18-39
  6. Hagerthey, S. E., D. M. Paterson, and J. Kromkamp, 2002. Monitoring estuarine ecosystems: the Eden Estuary and the BIOPTIS programme. Estuarine and Coastal Sciences Association, 2003. Coastal Zone Topics, 5. The Estuaries and Coasts of North-East Scotland. Aberdeen, Estuarine and Coastal Sciences Association, pp.89-97
  7. Hakvoort, J. H. M., M. Heineke, K. Heyman, H. Kuhl, R. Riethmuller, and G. Witte, 1998. A basis for mapping the erodibility of tidal flats by optical remote sensing. Marine and Freshwater Research, 49: 867-873 https://doi.org/10.1071/MF97090
  8. Huete, A. R., 1996. A Soil-adjusted Vegetation Index(SAVI), Remote sensing of Environment, 25: 295-309
  9. Heute, A. and C. Justice, 1999. MODIS Vegetation Index(MOD 13) Algorithm Theoretical Basis Document, Greenbelt: NASA Goddard Space Flight Center, http://modarch.gsfc.nasa.gov/MODISJLAND/#Vegetation indices, 129p
  10. Heute, A. F. and H. Q. Liu, 1994. An Error and Sensitivity Analysis of the Atmospheric-and Solid-Collecting Variants of the Normalized Difference Vegetation Index for the MODISEOS, IEEE Transactions on Geoscience and Remote Sensing, 32(4): 897-905
  11. Huete, A. R., G. Hua, J. Qi, A. Chehbouni and W. J. Van Leeuwem, 1992. . Normalization of Multidirectional Red and Near-Infrared Reflectances with the SAVI,. Remote Sensing of Environment, 40: 1-20
  12. Jeong, D-H, and B-G. Kim, 2002. Surveying and Geo-Spatial Information Engineering: Lens Distortion Correction for CCD Camera using Projective Transformation Method, The Korean society of Civil engineers collectedpapers D, 22(5): 995-1001
  13. Murphy, R.J., T. J. Tolhurst, M. G. Chapman, and A. J. Underwood, 2004. Estimation of surface chlorophyll on an exposed mudflat using digital colour-infrared (CIR) photography, Estuarine, Coastal and ShelfScience, 59: 625-638
  14. Jensen J. R., H-S Chae, G-E Kim, S-J Kim, Y-S Kim, K-S Lee, K-S Cho, and M-H Jo, 2002 ,Environment Remote Sensing, Sigma Press, Prentice Hall, pp.255-297, 381-386
  15. Jordan, C. F., 1969. Derivation of leaf area index from quality of lighton the forest floor, Ecology, 50: 663-666
  16. Koch, B., D. Munch, T. Probsting, 1998. Totholz als okosystemare Eingangsgrosse, In: Fischer, A.(Ed.), Die Entwicklung von Wald-Biozo nosen nach Sturmwurf. Landsberg, Baden- Wurttemberg, pp.64-73
  17. L. Shukai, 1992. Analysis of Remote Sensing of Global Environment and Resources, Surveying and Mapping Press, Beijing
  18. Lichtenthaler, H. K., A. Gitelson, M. Lang, 1996. Nondestructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements, Journal of Plant Physiology, 148: 483-493
  19. Livingstone, D., J. Raper, and T. McCarthy, 1999. Integrating aerial videography and digital photography with terrain modeling, Geomophology, 29: 77-92
  20. Mostafa, M. M. R. and K. P. Schwarz,2001.Digital image georeferencing from a multiple camera system by GPS/INS, ISPRS Journal of Photogrammetry & Remote Sensing, 5(1): 1-12
  21. Mostafa, M. M. R., K. P. Schwarz, and P. Gong, 1997. A fully digital system for airborne mapping, Proc.International Symposium on Kinematic Systems in Geodesy, Geomatics, and Navigation, Banff, Alberta, Canada, pp.463-471
  22. Nusslein, S., A. Greune, H. Adler, A. Troycke, G. Faisst, S Reimeier, and R. Dietrich, 1997. Totholzfliichen und Waldstrukturdaten im Nationalpark Bayerischer Wald (19961/1997), Bayerische Landesanstalt fur Wald und Forstwirtschaft, Dfreising
  23. Park, W-Y, K-W Lee, J-O Lee, and G-U Jeong, 2004, Block Adjustment with GPS/INS in Aerial Photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 22(3): 285-291
  24. Riethmuller, R., J. H. M. Hakvoort, M. Heineke, K. Heymann, H. Kuhl, and G. Witte, 1998. Relating erosion shear stress to tida lflat surface colour. In: Black, K.S., Paterson, D.M., Cramp, A. (Eds.), Sedimentary Processes in the Intertidal Zone. Special Publications 139. Geological Society, London, pp.283-293
  25. Graham R.and A. Koh, 2002. Digital Aerial Survey Theory and Practice, whittles Publishing, pp.52-121
  26. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1973. Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351, vol. 1, NASA, Washington DC, pp.309-317
  27. Running, S. W., C. O. Justice, V. Solomonson, D.Hall, J. Baker, Y. J. Kaufmann, A. H. Strahller, A. R. Heute, J. P. Muller, V. Vanderbilt, Z. M. Wan, P. Teillet, and D. Cameggie, 1994. Terrestrial Remote Sensing Science and Algorithms Planned for EOS/MODIS, Int. Journal of Remote Sensing, 15(17): 3587-3620 https://doi.org/10.1080/01431169408954346
  28. Scherrer, H. U., 1993. Projekt zur flachenhaften Erfassung und Auswertung von Sturmschaden, AFZ/IDer Wald, 14: 712-714
  29. Schmidtke, H., 1993. Die fraktale Geometrie von Sturmschaden-flachen im Wald, AFZ/Der Wald, 14:710-712
  30. Mason, S., H. Ruther, and J. Srnit, 1997. Investigation of the Kodak DCS460 digital camera for small-area mapping, ISPRS Journal of Photogrammetry & Remote Sensing, 52(5): 202-214
  31. Toth, C. and D. A. Grejner-Brzezinska, 1998. Performance analysis Z. of the airborne integrated mapping system AIMSe, Int. Z Arch. Photogr. Remote Sens., 32(2): 320-326
  32. G. J. C. Underwood, and J. Krornkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research, 29: 93-153