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Absitract

Tumor angiogenesis was simulated using a two-dimensional computational model. The equation that governed
angiogenesis comprised a tumor angiogenesis factor (TAF) conservation equation in time and space, which was solved
numerically using the Galerkin finite element method. The time derivative in the equation was approximated by a forward
Euler scheme. A stochastic process model was used to simulate vesse! formation and vesse! elongation towards a paracrine
site, i.e., tumor-secreted basic fibroblast growth factor (bFGF). In this study, we assumed a two-dimensional model that
represented a thin (1.0 mm) slice of the tumor. The growth of the tumor over time was modeled according to the dynamic
value of bFGF secreted within the tumor. The data used for the model were based on a previously reported model of a brain
tumor in which four distinct stages (namely multicellular spherical, first detectable lesion, diagnosis, and death of the virtual
patient) were modeled. In our study, computation was not continued beyond the ‘diagnosis’ time point to avoid the
computational complexity of analyzing numerous vascular branches. The numerical solutions revealed that no bFGF
remained within the region in which vessels developed, owing to the uptake of bFGF by endothelial cells. Consequently, a
sharp, declining gradient of bFGF existed near the surface of the tumor. The vascular architecture developed numerous
branches close to the tumor surface (the brush-border effect). Asymmetrical tumor growth was associated with a greater
degree of branching at the tumor surface.
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Introduction To determine the movement of the sprouting tips of

Despite substantial progress in therapeutic efforts, the enthothelial cells, these authors solved partial

outcome of some malignant cancers remains very poor.
Novel therapies are being developed, one of which is a
method to suppress cancer angiogenesis that was
proposed by Folkman' and others.

There have been many modeling studies of tumor
angiogenesis in which continuous or discrete models
were used. In continuous models, only the distribution
of enthothelial cells is considered; vascular networks are
not included. Chaplain et al.>* presented two- and three-

dimensional models of tumor angiogenesis using a

combination of both the discrete and continuous method.
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differential equations of the concentration of a tumor
angiogenesis factor (TAF), fibronectin concentrations,
and endothelial cell density using the finite difference
method. The formation and growth of vessel sprouts
were approximated using a stochastic process that was
based on the distribution of TAF and fibronectin.
Chaplain et al. also assumed that TAF secretion was
constant over time. The numerical solutions of such
models can be compared to experimental data, and
cellular mechanisms can be incorporated readily into
new mathematical models. Finally, Gazit er al.* used
fractal theory to compute the vessel networks that
surrounded a tumor and computed the hemodynamics

within the vessel structures.
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Previous Works

Recently, Tong et al.> developed a two-dimensional
model of angiogenesis in which they assumed a biased
random motion of endothelial cells. To obtain basic
information about the biased growth of endothelial cells,
these authors examined the transport of angiogenic
factors in rat cornea. Because vessel growth in their
study was independent of the computation mesh (unlike
Chaplain’s  model), tumor angiogenesis was
implemented in a more realistic and efficient manner.
However, one of the main problems with previous
models is that the quantity of angiogenic factors that are
released from tumor cells is assumed to be constant.
This assumption is unrealistic, because as the volume of
a tumor increases, so the quantity of angiogenic factors
that are released also increases.

In the present study, we present a computational
model of tumor-induced angiogenesis for a growing
brain tumor, based on Tong’s model’. However, in
contrast to Tong’s and other models, our model includes
dynamic (time-varying) release of angiogenic factors
from tumor cells. The model of the growing brain tumor
that we used was adopted from the work of Kansal et
al.®. The quantity of TAF released from a growing brain
tumor depends on the volume of the tumor and the
number of constituent cells. We selected basic fibroblast
growth factor (bFGF) as a TAF, because the
concentration of bFGF is reportedly proportional to the
increase in malignancy and vascularity of high-grade
gliomas™®. Some parameter values for bFGF-induced
angiogenesis were obtained from Tong et al.’, and we
used 50 pg/10° cells per 24 h as the production rate for
bFEGF by human US7 glioma cells’. The finite element
method was used to solve the convection-diffusion
equation for the concentration of bFGF. This method is
a convenient way with which to deal with the complex
geometry of real biological phenomena. Both vessel
formation and sprout elongation were simulated using a

stochastic process as in the aforementioned studies.

Model
Algorithm
1. Transport equation for basic fibroblast growth factor

The transport of bFGF within tissue depends on
diffusion of this molecule into the interstitial space,
uptake of bFGF by endothelial cells, and chemical

inactivation of bFGF within the extracellular space. The
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partial differential equation of bFGF transport is
represented in Eq. (1), which was obtained from Tong et

al’.
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In Eq. (1), C, D, k, u, and L represent the
concentration of bFGF, the diffusion coefficient of
bFGF, the rate constant of bFGF degradation, the rate
constant of bFGF uptake, and vessel density (defined
as the total vessel length per unit area), respectively.
For the computational domain, application of the
Galerkin finite element discretization for Eq. (2)

yielded the following equation.
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In Eq. (2), a Euler forward scheme was applied to
approximate the time derivative. (0 and /' represent
the computational domain and the basis function,
respectively. We replaced the variable C with the
interpolation function and nodal values in finite

elements to obtain the following matrix.

KX=R 3
¢

In this matrix, K is the stiffhess matrix, X is the vector
of unknown nodal variables of C, and R contains the
external driving forces. Four-node quadrilateral finite
elements with a linear interpolation function for the
concentration of bFGF were used to discretize the
computational domain in Eq. (2). The matrix Eq. (2) was

solved using an incomplete conjugate gradient method".

2. Sprout formation and elongation

The initial response of the endothelial cells to bFGF is
chemotactic, and this initiates the migration of endothelial
cells towards the bFGF-releasing tumor. Thereafter, small
capillary sprouts are formed. The sprouts increase in
length owing to the migration and recruitment of
endothelial cells. The sprouts continue to grow towards
the growing tumor, guided by the motion of the leading
endothelial cell at the tip of the sprout.

First, we introduced a threshold function f(C) to

account for the effect of concentration of bFGF on sprout



formation and elongation, as follows.

0<C<C
= C@
1) { 1-exp{-a(C-C,)}
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In Eq. (4), C,is the threshold concentration and a is a
constant that controls the shape of the curve.

To approximate sprout formation, we assumed that it is
a stochastic process. The probability T for the formation
of one sprout from a vessel segment in a time interval
between t and t+At is proportional to At, the segment
length Al, and the threshold function, as follows.

fi=S, f(C)AlAt (5)

In Eq. (5), Spa is a rate constant that determines the
maximum probability of sprout formation per unit time
and vessel length.

The growth of a sprout is determined by the locomotion
of its tip, while the geometry of a sprout depends on the
tip trajectory'’. The direction of sprout growth at each
time step depends on two unit vectors: the direction of
growth in the previous time step (E") and the direction of
the concentration gradient of the angiogenic factors (G).
This is because sprout growth depends on endothelial cell
migration, which has a tendency to persist in the same
direction as in the previous time step. To reflect the effect
of extracellular matrix on cell migration, we assumed that
the angle of deviation, 0, was between 7/2 and —=/2 and
that tan0 had a Gaussian distribution with a mean of zero
and a variance of 6. The direction of sprout growth was
expressed as follows.

EN | (e G2 | cos6  sin0) (6)
=P | +(1-P) ,

E, E, G, —sin® cos6

In Eq. (6), P is the persistence ratio, which varies

between 0 and 1. The increase in the length of a sprout

was represented as follows.

A=V, f(C) At )

A detailed description of sprout formation and

elongation can be found in the reference’.

3. Growing brain tumor model

We used a model of a brain tumor that had four distinct

growth stages, namely spherical, detectable lesion,
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diagnosis, and death®. To approximate data in each of
these growth stages, we used the following Gompertz

equation.

V=YV, exp(% (l - exp(—Bt))j ®)

In Eq. (8), A and B are parameters and V,, is the initial
volume. The quantity of bFGF release at each of the
four stages is summarized in Table 2. We assumed that
tumor growth was spherical and investigated a 1.0-mm-
thick, circular slice of the tumor for our two-dimensional
model. As both the proliferative and quiescent tumor
cell fractions likely release bFGF, wg calculated the
amount of bFGF at each of the four stages for the total
amount of living tumor cells using the cell numbers

reported by Kansal et al®.

Analysis

1. Two-dimensional simulation model

The two-dimensional model is depicted in Fig. 1. In Fig.
1, Lyomain, Rpv and R, represent the distribution of bFGF,
the radius of the parent vessel measured from the center
of the tumor, and the tumor radius, respectively. We
assumed that the radius of the tumor increased over time

and calculated the tumor radius using Eq. (8).

R= Ro{exp(g (- eXp(~Bt)))} " ©)

L bomain

L oomain

i

|
Location of
Parent vessel

)

Diffusion ——"
boundary

Figure 1. Two-dimensional model geometry for the
standard case of symmetrical tumor growth. Radii are
depicted as described in the text. To facilitate computation,
the geometric growth of the central (gray) tumor circle was

not calculated.
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In Eq. (9), Ry was assumed to be 1.0 mm as an initial
condition. Rpy was selected to allow the first branch to
reach the source at a time point at which the tumor radius
was 1.0 mm!', We found that a lattice disk with a radius
of 4.5 mm satisfied this condition, and Lygman Was
assumed to cover the disc. We also assumed that bFGF
was released continually from the tumor, which was
located at the center of the aforementioned disk (i.e.,
represented as a solid circle in a transverse section of the
tumor). The region into which angiogenic factors diffused
was a 10.0 x 10.0-mm square (Lgomain = 10.0 mm). Three
points of initial sprouting were located between 180° and
270°.

2. Initial and boundary conditions

To solve the equation that governed the
concentrations of angiogenic factors (Eq. (1)), a ‘no
flux’ condition was assumed for bFGF transport at the
boundary of the diffusion region. The initial
concentration of bFGF was zero within the
computational region. For computational convenience,
we assumed that the initial radius of the tumor was 0.1
mm. The concentration of bFGF at the tumor site
increased with the tumor volume, which concurs with a
cellular automaton model described previously, in which
a growing brain tumor was simulated over several orders
of magnitude®. Table 2 shows the rate of bFGF
production over time. For the space discretization of the
computational domain, a 200 x 200 finite element lattice
was used and linear approximations of the variables
within elements were assumed. We calculated both
symmetrical and asymmetrical tumor growth.

For asymmetrical tumor growth, we assumed that
tumor growth was symmetrical before the first vessel
branch made contact with the tumor surface; thereafter,
growth was assumed to be asymmetrical (see Eq. (10)).
As represented in Fig. 2, the vessel branch contacted the
tumor surface when R = 1.0 mm (T1 tumor with center
point Cl), after which the tumor began to grow
eccentrically.

The eccentricity L at time t (T2 tumor with center
point C2) owing to asymmetrical tumor growth was

defined as follows:

L= (t = tref) Veee if 1> treg (10)
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Figure 2. Two-dimensional model geometry for

asymmetrical tumor growth

In Eq. (10), t and t,.¢ represent the arbitrary time and
reference time at which the first vessel branch made
contact with the tumor surface, respectively. According
to the preliminary computation, t,.f was ~2,600 h. V. is
a variable that represents the rate of eccentricity change;
therefore, the eccentric distance at a time t can be
expressed as Eq. (10). In this study, we assumed that
Ve = 0.003 mm/h. The direction of eccentricity was
225°. In the equation above, note that only that part of

the tumor that was facing the blood vessels grew.

3. Branching pattern analysis
To quantify the vessel branching pattern within the

computational domain, we calculated the number of
branching points within a given region of interest (ROI).
A ROI was defined as 50 circular areas that divided the
space between the central tumor domain and the circle
from which the parent vessel originated (see Fig. 3).

A branching point was defined as the site at which
one vessel was divided into two new vessels (Fig. 3).
For each ROI, the total number of branching points
within the ROI was calculated according to the average
distance of the ROI from the parent vessel. To take into
account temporal variation of vessel growth, we
considered the total length of vessels at certain time
points (equivalent to the sum of the lengths of all vessels

that existed at that point in time).
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Figure 3 Schematic diagram illustrating the region of
interest (ROI) and branching point.
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Figure 4 Radius of the tumor and concentration of basic
fibroblast growth factor (bFGF) over time.

RESULTS

First, we computed a standard case for which the
parameters were as shown in Table 1. Dynamic changes
in the tumor radius and the concentration of bFGF (Fig.
4) were computed from Eg. (8).

Compared to the tumor radius, the concentration of
bFGF had a sharper gradient after ~t = 3,000 h. The
concentration distribution over time of bFGF (Fig. 5)
revealed that the concentration distribution of bFGF was
a radial isotropic gradient at t = 1,656 h (spherical state),
because the bFGF excreted from the tumor diffused
spatially in all directions and only very short branches
existed close to the parent vessel. As the branched
vessels grew toward the tumor surface, bFGF
consumption occurred around these vessels. The radial
gradient of the concentration distribution of bFGF

ceased to vary isotropically; the concentration of bFGF
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was very low on the side on which the vessels were
growing and was relatively high on the side opposite to
the parent vessel (Fig. 5(b) and (c)).

(a) t = 1,656 h (spherical growth stage).

(b)t= 2,600 h.

(c)t=3,000h

Figure 5 Contours of concentration gradient for bFGF
(relative to bFGF concentration for a tumor radius of 1.0
mm at t = 2,590 h) over time for the standard case of

symmetrical tumor growth.
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(a) t= 1,656 h (spherical growth stage)

(c)t=3,000h

(d)t=3,200 h.

Figure 6 Vessel structures over time for the standard case of symmetrical growth (Spax = 0.5)..

The vessel branching pattern for symmetrical tumor
growth is shown in Fig. 6. Initially, three branches from
the parent vessel grew toward the tumor following the
concentration gradient of bFGF. The lowest branch
appeared to be very short initially, but subsequently
branched numerous times as it approached the tumor
surface. In our simulation, the first vessel branch
touched the tumor surface at t = 2,590 h; this vessel
branching pattern is exemplified by the pattern in Fig.
6(b), which illustrates the branching pattern at t = 2,600
h. At t = 3,000 h, there were numerous vessel branches
close to the tumor surface (the brush-border effect; Fig.
6(c) and (d)).

The pattern of vessel growth for symmetrical tumor

growth is illustrated in Fig. 7.
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Figure 7 Number of branching points versus the RO, i.e.,
the radial distance between the parent vessel and the

tumor surface.
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At t = 1565 and t = 2600 h, the number of branching

points near the tumor surface was largely unchanged,

c
whereas at t = 2800 and t = 3000 h, there was a marked }j§§§§3
. . . . 1.63149
increase in the number of branching points near the 150599
1.38049

tumor surface. The total vessel length was relatively 125499
1.12049

constant initially, but increased sharply after the first 8’32223
vessel reached the tumor surface at t =2,590 h (Fig. 8). g-gﬁg
Asymmetrical tumor growth is illustrated in Figs. 9— Pl
11. Unlike symmetrical tumor growth, asymmetrical P

growth was associated with slightly elevated
concentrations of bFGF at the tumor surface (Fig. 9),

which acted as promoter that enhanced branching of the

parent vessel. Nevertheless, the difference in the

concentration of bFGF during symmetrical and Figure 9 Contours of concentration gradient for bFGF
asymmetrical growth was small. Figure 10 illustrates (relative to bFGF concentration for a tumor radius of 1.0
that asymmetrical tumor growth was biased toward the mm att = 2,590 h) at t = 3,000 h for asymmetrical growth.

parent vessel. Although the pattern of vessel branching
was similar to the case of symmetrical growth, branches
generated from the lowest location of the parent vessel
during asymmetrical growth were more densely
distributed close to the tumor surface as compared to
during symmetrical growth. Changes in the total vessel
length during asymmetrical tumor growth (Fig. 11) were
similar to those that occurred during symmetrical
growth, but the total vessel length was slightly greater
after t = 3,000 h as compared to that during symmetrical
growth.

Discussion

In this study we proposed a new computational method
to simulate tumor angiogenesis in two dimensions. For Figure 10 Vessel structures over time for the standard
the analysis of the spatial distribution of bFGF over time, case of symmetrical growth at t = 3,200 h.

the bFGF conservation' equation was solved using a
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Figure 8 Total vessel length over time for the standard Figure 11 Total vessel length over time for asymmetrical
case of symmetrical tumor growth. tumor growth.
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finite element method. Unlike previous studies, we
assumed that the tumor grew over time in our model. This
allowed us to observe the effect of dynamic bFGF

production and its effect on vessel branching patterns. The
brain tumor model proposed by Kansal ef al.% was used as
a basis for our model of a growing tumor, which

comprised four distinct stages, namely spherical state,

first detectable lesion, diagnosis, and death. In the present

study, we computed both symmetrical and asymmetrical

tumor growth and compared the results of each. Biased

tumor growth toward vessel branches was assumed to
simulate the asymmetric growth of the tumor.

From a computational aspect, we used a finite
element method to solve the conservation equation of
bFGF concentrations, whereas a finite difference
method was used in previous studies. It is widely
recognized that the finite element method is more
flexible when dealing with complex geometry. In
addition, it is relatively easy to implement boundary
conditions with this method. However, the finite
element method requires more computing time than the
finite difference method. If a realistic tumor geometry
obtained from magnetic resonance imaging data is
adopted as the computational model, the finite element
method is better suited to solving the equations for such
a complex shape. If the finite element method that we
used is combined with an automatic mesh generation
program in a two-dimensional (triangular mesh) or
three-dimensional (tetrahedron mesh) geometry, a
realistic (and therefore clinically relevant) tumor can be
simulated..

Our model is novel in that we simulated a tumor
that grew and exhibited angiogenetic responses to
changing concentrations of bFGF. As shown in Figs.
8 and 11, the number of vessel branches increased
dramatically as soon as a vessel branch made contact
with the tumor surface for the first time. This can be
explained physiologically by the fact that tumors
generally grow rapidly once blood is supplied to
them directly from a parent vessel; therefore, tumors
exhibit a bias in growth that is skewed towards the
parent vessel. To examine the effect on angiogenesis
of such biased tumor growth, we computed a
comparison of asymmetrical and symmetrical tumor
growth. In the case of symmetrical growth, bFGF
was almost completely consumed at the tumor
surface. By contrast, there were slightly higher
concentrations of bFGF at the tumor surface during
asymmetrical growth, which acted as a promoter that
enhanced the branching of the parent vessel.
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