DOI QR코드

DOI QR Code

Nuclear DNA Quantification of Some Ceramialean Algal Spermatia by Fluorescence Microscopic Image Processing and their Nuclear SSU rDNA Sequences


Abstract

Nuclear DNA contents of spermatia from eight ceramiacean and four dasyacean algae (Ceramiales, Rhodophyta) and microspores from two land plants were estimated by fluorescence microscopic image processing and their nuclear SSU rDNA sequence data were analyzed. In frequency distribution patterns, the DAPI-stained nuclear volume (NV) of spermatia showed two peaks corresponding to 1C and 2C. Nuclear 2C DNA contents estimated from NV were 0.45-2.31 pg in ceramiacean and 0.40-0.57 pg in dasyacean algae and 8.42-9.51 pg in two land plants, Capsicum annuum and Nicotiana tabacum. By nuclear patterning of vegetative cells derived from an apical cell, 2C DNA contents of spermatia were 2.31 pg in an alga having uninucleate and non-polyploid nucleus (Aglaothamnion callophyllidicola), 0.45-1.94 pg in algae having uninucleate and polyploid nucleus (Antithamnion spp. and Pterothamnion yezoense), and 0.40-0.62 pg in algae having multinucleate and non-polyploid nuclei (Griffithsia japonica and dasyacean algae). Each mature spermatium and microspore (pollen grain) seemed to have a 2C nucleus, which may provide a genetic buffering system to protect the genetic content of a spermatium and microspore from potentially lethal mutations. Nuclear DNA content and SSU rDNA sequence of Antithamnion sparsum from Korea were reasonably different from those of Antithamnion densum from France. The data did not support the previous taxonomic studies that these two taxa could be conspecific.

Keywords

References

  1. Arumuganathan K. and Earle E.D. 1991. Nuclear DNA content of some important plant species. PlantMol. Biol. Rep. 9: 208-218 https://doi.org/10.1007/BF02672069
  2. Athanasiadis A 1990. Evolutionary biogeography of the North Atlantic antithamnioid algae (Rhodophyta, Ceramiales ). In: Garbary D.J. and South G.R. (eds), Evolutionary biogeography of the marine algae of the North Atlantic. Springer-Verlag, Berlin. pp. 219-240
  3. Athanasiadis A. 1996. Morphology and classification of the Ceramioideae (Rhodophyta) based on phylogenetic principles. Opera Botanica 128: 1-216
  4. Baetche K.P., Sparrow A.H., Mauman C.H. and Schwemmer S.S. 1967. The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). P.N.A.S., USA 58: 433-540
  5. Bennett M.D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Pro. R. Soc. Lond. B. 181: 109-135 https://doi.org/10.1098/rspb.1972.0042
  6. Bennett MD. 1987. Variations in genome form in plants and its ecological implications. New Phytologist 106: 177-200 https://doi.org/10.1111/j.1469-8137.1987.tb04689.x
  7. Boo S.M. and Lee I.K. 1983. A life history and hybridization of Antithamnion sparsum Tokida (Rhodophyta, Ceramiaceae) in culture. Kor. J. Bot. 26: 141-150
  8. Choi H.-G. and Kim KY. 2001. Mixed-phase reproduction of Dasysiphonia chejuensis from Korea: nuclear DNA contents and environmental factors. Algae16: 437-443
  9. Choi H.-G., Kraft G. T. and Saunders G. W. 2000. Nuclear smallsubunit rDNA sequences from Ballia spp. (Rhodophyta): proposal of the Balliales ord. nov., Balliaceae fam. nov., Ballia nana sp. nov. and Inkyuleea gen. nov. (Ceramiales). Phycologia 39: 272-87 https://doi.org/10.2216/i0031-8884-39-4-272.1
  10. Choi H.-G., Kraft G. T., Lee I. K and Saunders G. W. 2002. Phylogenetic analyses of anatomical and nuclear SSU rDNA sequence data indicate that the Dasyaceae and Delesseriaceae (Ceramiales, Rhodophyta) are polyphyletic. Eur. J. Phycol. 37: 551-69 https://doi.org/10.1017/S0967026202003967
  11. Choi H.-G. and Lee I.K 1996. Mixed-phase reproduction of Dasysiphonia chejuensis (Rhodophyta) from Korea. Phycologia 35: 9-18 https://doi.org/10.2216/i0031-8884-35-1-9.1
  12. Choi H.-G., Lee Y.K and Lee I.K 1994. Measurement of DAPIstained DNA of Dasysiphonia chejuensis Lee et West (Rhodophyta) by a video interfaced digital image processor. Korean J. Phycol. 9: 21-28
  13. Coleman A.W., Maguire M.J. and Coleman J.R. 1981. Mithramycin and 4',6-diamidino-2-phenylindole (DAPI)staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plastids, and virus particles. J. Histochem. Chtochem. 29: 959-968 https://doi.org/10.1177/29.8.6168681
  14. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-91 https://doi.org/10.2307/2408678
  15. Galbraith D.W., Harkins KR., Maddox J.M., Ayres N.M., Sharma D.P. and Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051 https://doi.org/10.1126/science.220.4601.1049
  16. Gilbert D.G. 1995. SeqPup: a biosequence editor and analysis program. Published electronically on the internet, available via anonymous ftp to: ftp.bio.indiana.edu
  17. Goff L.J. and Coleman AW. 1984. Elucidation of fertilization and development in a red alga by quantitative DNA microspectrofluorometry. Development. Biol. 102: 137-194
  18. Goff L.J. and Coleman A.W. 1987. The solution to the cytological paradox of isomorphy. J. CellBioi. 104: 739-748 https://doi.org/10.1083/jcb.104.3.739
  19. Goff L.J.and Coleman AW. 1990. DNA: microspectrofluorometric studies. In: Cole K.M. and Sheath RG. (eds), Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 43-71
  20. Guiry MD. and Maggs CA 1991. Antithamnion densum (Suhr) Howe from Clare Island, Ireland: a marine red alga new to the British Isles. Crypt. Algol.12: 189-194
  21. Johansen B.,Seberg O., Petersen G. and Aretander P. 1995. Does DAPI detect cytoplasmic DNA? Amer. J. Bot. 82: 1215- 1219 https://doi.org/10.2307/2446243
  22. Kapraun D.F. 1993a. Karyology and cytophotometric estimation of nuclear DNA variation in several species of Polysiphonia (Rhodophyta, Ceramiales). Bot. Mar. 36: 507-516 https://doi.org/10.1515/botm.1993.36.6.507
  23. Kapraun D.F. 1993b. Karyology and cytophotometric estimation of nuclear DNA variation in Gracilaria, Gracilariopsis, and Hydropuntia (Gracilariales, Rhodophyta). Eur. J. Phycol. 28: 253-260 https://doi.org/10.1080/09670269300650371
  24. Kapraun D.F. 1993c. Karyology of marine green algae. Phycologia 32: 1-21 https://doi.org/10.2216/i0031-8884-32-1-1.1
  25. Kapraun D.F. and Buratti J.R. 1998. Evolution of genome size in the Dasycladales (Chlorophyta) as determined by DAPI cytophotometry. Phycologia 37: 176-183 https://doi.org/10.2216/i0031-8884-37-3-176.1
  26. Kapraun D.F. and Dunwoody J.T. 2002. Relationship of nuclear genome size to some reproductive cell parameters in the Florideophycidae (Rhodophyta). Phycologia 41: 507-516 https://doi.org/10.2216/i0031-8884-41-5-507.1
  27. Kapraun D.F. and Dutcher J.A. 1991. Cytophotometric estimation of inter- and intraspecific nuclear DNA content variation in Graci/aria and Graci/ariopsis (Gracilariales, Rhodophyta). Bot. Mar. 34: 139-144 https://doi.org/10.1515/botm.1991.34.2.139
  28. Kapraun D.F. and Nguyen M.N. 1994. Karyolgy, nuclear DNA quantification and nucleus-cytoplasmic domain variations in some multinucleate green algae (Siphonocladales, Chlorophyta). Phycologia 33: 42-52 https://doi.org/10.2216/i0031-8884-33-1-42.1
  29. Lee S.-R., Oak J. H., Suh Y. and Lee I. K 2001. Phylogenetic utility of rbcS sequences: an example from Antithamnion and related genera (Ceramiaceae, Rhodophyta). J. Phycol. 37: 1083-90 https://doi.org/10.1046/j.1529-8817.2001.01038.x
  30. Lee Y.K., Choi H.-G, Lee I.K and Hong C.B. 1995. Sexual differentiation of Griffithsia (Ceramiales, Rhodophyta): nuclear ploidy level of mixed-phase plants in G. japonica. J. Phycol. 31: 668-673 https://doi.org/10.1111/j.1529-8817.1995.tb02564.x
  31. Maddison W.P. and Maddison D.R. 1999. MacClade, release version 3.08a. Sinauer Associates, Sundeland, Massachusetts
  32. Phillips L.E., Choi H.-G., Saunders G.W. and Kraft G.T. 2000. The morphology, taxonomy, and molecular phylogeny of Heterocladia and Trigenea (Rhodomelaceae, Rhodophyta), with delineation of the little-known tribe Heterocladieae. J. Phycol. 36: 199-219 https://doi.org/10.1046/j.1529-8817.2000.98186.x
  33. Price H.J. 1976. Evolution of DNA content in higher plants. Bot. Rev. 42: 27-52 https://doi.org/10.1007/BF02860861
  34. Price H.J., Sparrow AH. and Nauman AF. 1973. Evolutionary and developmental considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms. Brookhaven Symposium in Biology 25: 390-421
  35. Provasoli L. 1966. Media and prospects for the cultivation of marine algae. In: A. Watanabe and Hottori A. (eds), Cultures and Collections of Algae. Proc. U.S.-Japan Conf., Hakone Sep. 1966. Jap. Soc. Plant Physiol. pp. 63-75
  36. Ragan M.A, Bird C.J., Rice E.L., Gutell R.R, Murphy C.A and Singh R.K. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. U.S.A. 91: 7276-80 https://doi.org/10.1073/pnas.91.15.7276
  37. Reeves G., Francis D., Davies M.S., Rogers H.J. and Hodkinson T.R. 1998. Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann. Bot. 82 (Suppl, A): 99-105 https://doi.org/10.1006/anbo.1998.0751
  38. Saunders G.W. and Kraft G.T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). I. Evidence for the Plocamiales ord. nov. Can. J. Bot., 72: 1250-1263 https://doi.org/10.1139/b94-153
  39. Saunders G.W. and Kraft G.T. 1996. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). II. Recognition of the Halymeniales ord. nov. Can. J. Bot., 74: 694-707 https://doi.org/10.1139/b96-088
  40. Saunders G.W., Strachan I.M., West J.A and Kraft G.T. 1996. Nuclear small-subunit ribosomal RNA gene sequences from representative Ceramiaceae (Ceramiales, Rhodophyta). Eur.J. Phycol. 31: 23-9 https://doi.org/10.1080/09670269600651151
  41. Sparrow A.H. and Mishke J. P. 1961. Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiation. Science 134: 282-283 https://doi.org/10.1126/science.134.3474.282
  42. Sparrow AH. and Nauman AF. 1973. Evolutionary changes in genome and chromosome sizes and in DNA content in the grasses. Brookhaven Symposiumin Biology 25: 367-389
  43. Strache-Crain B, Muller D.G. and Goff L.J. 1997. Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analysis of nuclear- and plastid- encoded DNA sequences. J. Phycol. 33: 152-168 https://doi.org/10.1111/j.0022-3646.1997.00152.x
  44. Swofford D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.02b10. Sinauer Associates, Sundeland, Massachusetts
  45. Yamaguchi M. and Imai I. 1994. A microfluorometric analysis of nuclear DNA at different stages in the life history of Chattonella antiqua and Chattonella marina (Raphidophyceae). Phycologia 33: 163-170 https://doi.org/10.2216/i0031-8884-33-3-163.1
  46. Yoshida T. 1981. Note on Antithamnion sparsum Tokida (Rhodophyta, Ceramiaceae). lpn. J. Phycol. 29: 47-50
  47. Yoshida T. 1998. Marine algae ofJapan. Uchida Rokakuho Publ. Co., Tokyo. 1222 pp

Cited by

  1. PHYLOGENETIC RELATIONSHIPS AMONG LINEAGES OF THE CERAMIACEAE (CERAMIALES, RHODOPHYTA) BASED ON NUCLEAR SMALL SUBUNIT rDNA SEQUENCE DATA1 vol.44, pp.4, 2008, https://doi.org/10.1111/j.1529-8817.2008.00554.x
  2. Estimates of nuclear DNA content in red algal lineages vol.2012, pp.0, 2012, https://doi.org/10.1093/aobpla/pls005