DOI QR코드

DOI QR Code

Effects of Added Vegetable Oils on In vitro Formation of Fatty Acid Soaps and Fermentation Characteristics and NDF Disappearance Rate

식물성유 첨가가 In vitro 발효성상, NDF 소실율 및 지방산염 형성에 미치는 영향

  • Kim, D.I. (Department of Animal Science, Konkuk University) ;
  • Choi, J.R. (Department of Animal Science, Konkuk University) ;
  • Lee, Y.H. (Department of Animal Science, Konkuk University) ;
  • Lee, J.K. (Department of Animal Science, Konkuk University) ;
  • Chung, T.Y. (Department of Animal Science, Konkuk University)
  • 발행 : 2004.06.30

초록

In vitro experiments were conducted to determine the formation of fatty acid soaps (FAS) and neutral detergent fiber (NDF) disappearance rate. The substrates were a basal alfalfa hay containing 1) no oil, 2) 10% soybean oil, 3) 10% com oil, on a weight basis. All the substrates were incubated in triplicate for 0, 3, 6, 12, 24 and 48h in each experiment. After the incubation in the first experiment serum bottles (6oml) were analyzed for nonesterified, esterifed and fatty acid soaps contents. The serum bottles (120mI) from the second experiment were analyzed for pH, $NH_3-N$ and VFA concentration, and dry matter and NDF disappearance rate. pH decreased and the concentration of NH3-N increased significantly with longer incubation time (P<0.0001). The disappearance rates of dry matter and NDF significantly varied with feed, incubation time and oils (P<0.05). The molar concentration of total VFA increased and proportion of acetate significantly decreased with incubation time (P<0.0001), but the proportion of propionate significantly increased with longer incubation time (P<0.0001). Addition of oils to diet lowered the ratio of acetate:propionate (P<0.05). The esterified fatty acids (EFA) decreased with increasing incubation time (P<0.0001), and nonesterified fatty acids (NEFA) increased due to lipolysis of EFA, NEFA then reacted with cations to increase formation of FAS. The formation of FAS increased significantly at 48h of incubation time (P<0.0001). Especially, formation of stearic acid soaps was 27.5 and 32.5 folds with soybean oil and com oil supplements, respectively, by 48h of incubation time (P<0.0001). Alfalfa hay had higher cation contents, particularly Ca, which react with NEFA and FAS can be formed with longer incubation time. Saturated fatty acids had a higher proportion of FAS than did unsaturated fatty acids, suggesting that the former may react more extensively with cations. FAS contents increased with increasing chain length of the fatty acids. Since added vegetable oils fonned FAS, it might decrease negative effects on in vitro fermentation characteristics and NDF disappearance rate.

식물성유 첨가시 배양시간에 따른 지방산염의 형성 정도와 발효성상 및 NDF 소실율에 미치는 영향을 규명하고자 in vitro 시험을 실시 하였다. 기질은 알팔파 건초로 하고 1) oil 무첨가구, 2) 대두유 10%첨가구 및 3) 옥수수유 10%첨가구로 하였으며, oil 첨가 수준은 기질중량 건물 기준으로 첨가하였다. 발효성상 및 NDF 소실율을 위한 시험에서는 120ml serum bottle을 사용하여 3반복 실시하여 pH, $NH_3-N$, VFA농도 및 건물과 NDF 소실율을 분석하엿다. 지방산 분획을 위한 시험에서는 60ml serum bottle을 사용하요 3반복 실시하여 NEFA, EFA 및 FAS의 형성 정도를 분석하였다. pH는 배양시간이 증가함에 따라 유읭적으로 감소하였고, $NH_3-N$ 농도는 유의하게 증가하였다(P<0.0001). 건물 및 NDF 소실율은 처리구, 배양시간 및 oil간 유의하게 차이를 보여주었다(P<0.05). 총 휘발성 지방산 농도는 배양시간이 증가함에 따라 유의하게 증가하였다(P<0.0001). Acetate는 시험구 모두 배양시간이 증가함에 따라 유의적으로 감소하였고(P<0.0001), 대조구에 비해 oil 첨가구가 유의적으로 낮아졌다(P<0.05). Propionate는 시험구 모두 배양시간이 증가함에 따라 유의적으로 증가하였지만(P<0.0001), 처리구 및 oil간 효과는 없었다. Oil 첨가구에서 A/P비율이 유의하게 낮아졌다(P<0.05). EFA는 배양시간이 증가함에 따라 유의하게 감소하였고(P<0.0001), NEFA는 EFA의 가수분해로 인하여 증가하였다. 배양시간 48시간에서는 NEFA가 양이온과 결합하여 FAS의 형성 비율이 유의적으로 증가하였다(P<0.0001). 특히 $C_{18:0)$의 FAS 형성은 배양시간 48시간에서 대두유 및 옥수수유 첨가구에서 각각 12.53 및 15.17mg/g DM으로 0시간에 비해 각각 27.5 및 32.5배 증가하였다(P<0.0001). 배양시간이 증가할수록 칼슘을 포함한 양이온 함량이 높은 알팔파가 분해되면서 양이온이 용해되어 유리된 지방산과 결합하여 지방산염을 형성하게 된다. 이때 불포화지방산보다는 포화지방산이 양이온과 반응하여 지방산염을 형성하기 쉽다. 또한 $C_{16:0}$ 이상의 장쇄지방산이 주로 지방산염을 형성하였다. 이러한 특성 때문에 배양액내에 유리된 지방산이 염을 형성하기 쉽고 oil 첨가시 발생하는 발효성상 및 NDF소실율에 미치는 부의 영향을 최소화 한 것으로 사료된다.

키워드

참고문헌

  1. AOAC. 1995. Official Methods of Analysis (15th ed.). Association of Official Analytical Chemists, Washington, D. C.
  2. Beam, T. M., Jenkins, T. C., Moate, P. J., Kohn, R A. and Palmquist, D. L. 2000. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in rorninal contents. J. Dairy Sci., 83:2564-2573. https://doi.org/10.3168/jds.S0022-0302(00)75149-6
  3. Boggs, D. L., Bergen, W. G. and Hawkins, D. R 1987. Effects of tallow supplementation and protein withdrawal on ruminal fennentation, microbial synthesis and site of digestion. J. Anim. Sci., 64:907-914.
  4. Chalupa, W., Rickabaugh, B., Kronfe1d, D. S. and Sklan, D. 1984. Rumen fennentation in vitro as influenced by long chain fatty aieds. J. Dairy Sci., 67:1439-1444.
  5. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for detennination of urea and ammonia, Clinical Chemistry, 8:130-132.
  6. Cheng, K. J., Forsberg, C. W., Minato, H. and Costerton, J. W. 1991. Microbial ecology and physiology of feed degradation within the rumen. Physiological aspects of digestion and metabolism in ruminants (T. Tsuda ed.). Academic Press, Inc. pp. 595-624.
  7. Czerkawski, J. W. and Clapperton, J. L. 1984. Fats as energy yielding compounds in the ruminant diet. Fats in animal nutrition (J. Wiseman ed.). Butterworth, London. pp. 249-263.
  8. Devendra, C. and Lewis, D. 1974. The interaction between dietary lipids and fibre in the sheep. Anim. Prod., 19:67-76.
  9. Doreau, M., Legay, F. and Bauchart, D. 1991 Effect of source and level of supplemental fat on total and ruminal organic matter and nitrogen digestion in dairy cows. J. Dairy Sci., 74: 2233-2242.
  10. Folch, J., Lees, M. and Sloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. BioI. Chem., 226:497-509.
  11. Gulati, S. K., Scott, T. W. and Ashes, J. R. 1997. In vitro assessment of fat supplements for ruminants. Anim. Feed Sci. Technol., 64:127-132. https://doi.org/10.1016/S0377-8401(96)01063-2
  12. Harfoot, C. G. and Hazlewood, G. P. 1988. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem (P. N. Hobson ed.). Elsevier Applied Science. London and New York. pp. 285-322.
  13. Harfoot, C. G., Crouchman, M. L., Noble, R C. and Moore, J. H. 1974. Competition between food particles and rumen bacteria in the uptake of long-chain fatty acids and triglycerides. J. Appl. Bact., 37:633-641. https://doi.org/10.1111/j.1365-2672.1974.tb00487.x
  14. Hawke, J. C. and Silcock, W. R. 1970. The in vitro rates of lipolysis and biohydrogenation in rumen contents. Biochim. Biophys. Acta, 218:201-212. https://doi.org/10.1016/0005-2760(70)90138-4
  15. Henderson, C. 1973. The effects of fatty acids on pure cultures of rumen bacteria J. Agric, Sci., Camb., 81:107-112.
  16. lkwuegbu, O. A. and Sutton, J. D. 1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr., 48:365-375. https://doi.org/10.1079/BJN19820120
  17. Jenkins, T. C. 1993. Lipid metabolism in the rumen. J. Dairy Sci., 76:3851-3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9
  18. Jenkins, T. C. and Palmquist, D. L. 1982. Effect of added fat and calcium on in vitro formation of insoluble fatty acid soaps and cell wall digestibility. J. Anim, Sci., 55:957-963. https://doi.org/10.2527/jas1982.554957x
  19. Jenkins, T. C. and Palmquist, D. L. 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci., 67:978-986. https://doi.org/10.3168/jds.S0022-0302(84)81396-X
  20. Lough, A. K. 1969. Aspects of lipid digestion in the ruminant: In Physiology of digestion and metabolism in the ruminant Proceedings of the Third International Symposium, Cambridge, England, pp. 519-528.
  21. McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochem. J., 43:99-109. https://doi.org/10.1042/bj0430099
  22. Palmquist, D. L. 1987. Adding fat to dairy diets. Animal Health & Nutrition, pp 32-35.
  23. Palmquist, D. L. and Jenkins, T. C. 1980. Fat in lactation rations: Review. J. Dairy Sci., 63:1-14.
  24. Palmquist, D. L. and Yang, U. M. 1999. Adsorption of fatty aicds to plant surfaces. S. Afr, J. Anim. Sci. 29(ISRP), pp 59-60.
  25. Palmquist, D. L., Jenkins, T. C. and Joyner, A. E. Jr. 1986. Effect of dietary fat and calciwn source on insoluble soap formation in the rumen. J. Dairy Sci., 69:1020-1025.
  26. Sukhija, S. and Palmquist, D. L. 1988. Rapid method for determination of total fatty acid composition of feedstuffs and feces. J. Agric. Food Chern., 36:1202-1206. https://doi.org/10.1021/jf00084a019
  27. Tamminga, S. and Doreau, M. 1,991. Lipids and rumen digestion. In: Rumen Microbial Metabolism and Ruminant Digestion (J. P. Jouany ed.). INRA, Paris. pp 151-163.
  28. Van Nevel, C. J. and Demeyer, D. I. 1996. Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod. Nutr. Dev., 36:53-63. https://doi.org/10.1051/rnd:19960105
  29. Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstareh polysaccharides in relation to animal nutrition. Symposiwn: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. White, T. W., Grainger, R. B., Baker, F. H. and Stroud, J. W. 1958. Effect of supplemental fat on digestion and the ruminal calcium requirement of sheep. J. Anim. Sci., 17:797-803. https://doi.org/10.2527/jas1958.173797x
  31. Yang, U. M., Fujita, H. and Chung, T. Y. 2000. Effects of grass lipid and its fatty acids on ruminal fermentation and microbial growth in vitro. Asian-Aus, J. Anim. Sci., 13:176-181. https://doi.org/10.5713/ajas.2000.176
  32. 김동일. 2004 식물성유 첨가가 반추위내 지방산 조성, 지방산염 형성 및 NDF 소화율에 미치는 영향. 건국대학교 박사학위논문.
  33. 배희동, K. J. Cheng, T. A. McAllister, 신형태. 1992. 반추위내 미생물의 소화작용과 발효조절에 관한 고찰. 한국영양사료학회지, 16:359-382.
  34. 양운목, Hiroshi Fujita, 정태영. 1998. In vitro 배양시 목초의 지질이 목초 성분의 분해와 미생물 성질소 함량에 미치는 영향. 한국영양사료학회지, 22:413-418.