References
- Haggerty, G. M. and Bowman, R S., 'Sorption of chromate and other inorganic anions by organo-zeolite,' Environ. Sci. Technol., 28(3), 452-458 (1994)
- Curkovic, L., Cerjan-stefanovic, S., and Filipan, T., 'Metal ion exchange by natural and modified zeolites,' Water Res., 31(6), 1379-1382 (1997)
- Mier, M. V., Callejas, R. L., Gehr, R., Cisneros, B. E. J., and Alvarez, P. J. J., 'Heavy metal removal with Mexican clinoptilolite multi-component ionic exchange,' Water Res., 35(2), 373-378 (2001)
- Semmens, M. J. and Goodrich, R. R., Jr. 'Biological regeneration of ammonium-saturated clinoptilolite I. Initial observations,' Environ. Sci. Technol., 11(3), 255-259 (1977)
- Park, J. B., Lee, S. H., Lee, J. W., and Lee, C. Y., 'Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B),' J. Hazard Mater, 95(1-2), 65-79 (2002)
- Li, Z., Jones, H. K., Bowman, R. S., and Helferich, R, 'Enhanced reduction of chromate and PCE by palletized surfactant-modified zeolite/zero valent iron,' Environ. Sci. Technol., 33(23), 4326-4330 (1999)
- Lee, J. J., Choi, J. Y., and Park, J. W., 'Simultaneous sorption of lead and chloro-benzene by organobentonite,' Chemosphere, 49(10), 1309-1315 (2002)
- Li, Z. and Bowman R. M., 'Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading,' Environ. Sci. Technol., 32(15), 2278-2282 (1998)
- Sullivan, E. J., Hunter, D. B., and Bowman, R S., 'Fourier transformation raman spectroscopy of sorbed HDTMA and the mechanism of chromate sorption to surfactant-modified clinoptilolte,' Environ. Sci. Technol., 32(13), 1948-1955 (1998) https://doi.org/10.1021/es9708981
- Bowman, R. S., Haggerty, G. M., Huddlestone, R. G., Neel, D., and Flynn, M. M., In surfactant-enhanced subsurface remediation Sabatinim, D. A., Knox, R. C., Hardwell, J. H., Eds.; ACS symposium series 594; American chemical society: Washington, DC, 54-64 (1995)
- Blowes, D. W., Ptacek, C. J., and Jambor, J. L., 'In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies,' Environ. Sci. Technol., 31(12), 3348-3357 (1997)
- Su, C. and Puis, R. W., 'Arsenate and arsenite removal by zero valent iron: kinetics, redox transformation, and implication for in situ groundwater remediation,' Environ. Sci. Technol., 35(7), 1487-1492 (2001)
- Alowitz, M. J. and Scherer, M. M., 'Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal,' Environ. Sci. Technol., 36(3), 299-306 (2002)
- Gould, J. P., 'The kinetics of hexavalent chromium reduction by metallic iron,' Water Res., 16, 817-877 (1982)
- Cantrell, K. J., Kaplan, D. I., and Wietsma, T. W., 'Zero valent iron for in situ remediation of selected metals in groundwater,' J. of Hazard Mater, 42(2), 201-212 (1995)
- Powell, R. M., Puls, R. W., Hightower, S. K., and Sabatini, D. A., 'Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation,' Environ. Sci. Technol., 29(8), 1913-1922 (1995) https://doi.org/10.1021/es00008a008
- Eary, L. E. and Rai, D., 'Chromate removal from aqueous wastes by reduction with ferrous ion,' Environ. Sci. Technol., 22(8), 972-977 (1988)
Cited by
- APPLICATIONS OF SERICITE IN WASTEWATER TREATMENT : REMOVAL OF Cu(II) AND Pb(II) FROM AQUEOUS SOLUTIONS vol.11, pp.6, 2004, https://doi.org/10.4491/eer.2006.11.6.303
- Cr(VI) retention and transport through Fe(III)-coated natural zeolite vol.221, pp.None, 2012, https://doi.org/10.1016/j.jhazmat.2012.04.016