Hematite系 微粉鑛石을 사용한 $CO-H_2$ 混合 Gas에 의한 高炭化鐵의 合成

Synthesis of Super Iron Carbide from Hematite Fines with $CO-H_2$ Gas Mixture

  • 정우창 (釜山大學校 東南圈 部品素材 産學協力 革新事業團)
  • Chung, Uoo-Chang (Industrial Liaison Innovation Cluster, Pusan National University)
  • 발행 : 2004.10.01

초록

탄화철을 합성하는 공정을 수소($H_2$) 환원과 $CO-H_2$ 혼합가스에 의한 탄화의 2단계 과정으로 나누어서 수행했다. 환원종료 후 미량의 암모니아 가스를 첨가하여 환원철의 표면을 개질한 후, 탄화시간 경과별 탄화상태를 C/S 분석기(Low C/S determinator), 뫼스바우어 분광 분석기(Mossbauer spectroscopy), XRD(X-ray diffraction patterns), SEM(Scanning electron microscopy), TEM(Transmission electron microscopy), XPS(Photoelectron spectroscopy), 및 라만분광기 (Raman spectroscopy)를 사용하여 조사하였다. 연구결과, 미량의 암모니아가스로 환원철 표면을 개질함으로써 탄화철의 분해 및 유리탄소의 석출을 방지할 수 있을 뿐만아니라 6.68wt% 이상 10wt% 까지 탄소가 과고용된 상태에서도 분해되거나 유리탄소를 석출하지 않고 안정상태를 유지하였다. 이러한 결과로부터 철(Fe)과 세멘타이트(cementite, $Fe_3C$)가 혼합되지 않고 고탄화철(SIC, super iron carbide)인 Fe5C2 상태의 안정한 단일상을 얻는데 성공하였다.

To investigate the characteristics of phases formed in iron carbides, super iron carbide was synthesized from hematite fines with $CO-H_2$ gas mixture after reduction under $H_2$ gas at $600^{\circ}C$. Before carburization, the surface of iron powder reduced was pre-treated in the atmosphere of 0.05 vol% $NH_3$-Ar. The synthesized iron carbides were comprehensively explored by C/S analyzer(Low C/S determinator), M$\"{o}$ssbauer spectroscopy, X-ray diffraction patterns(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and Raman spectroscopy at various reaction time of 5, 10, 15, 20, 25, 30, and 35 min, respectively. By adding a small amount of $NH_3$ gas, the super iron carbides containing 10 wt% carbon were synthesized, and its addition stabilized iron carbides. It was found that the $NH_3$ treatment played a major role in the formation of iron carbide without decomposition($Fe_3C{\to}$3Fe+C) of iron carbides and precipitation of free carbon. It also succeed to synthesize super iron carbide, $Fe_5C_2$, as a stable single phase without involving Fe and $Fe_3C$ phases.

키워드

참고문헌

  1. Gradke. H. J MulIer-Lorenz, E. M. and Schneider, A., 2001: ISIJ Int., 41. pp. S1-S8 https://doi.org/10.2355/isijinternational.41.Suppl_S1
  2. Geiger, G. H. and Stephens, F. A. 1993: Ironnidking Conf. Proc., pp. 333-338
  3. Pollock, B. A. 1993: Iron Steelmaker, 20, pp. 25-29
  4. Garraway., 1996: lron Steelmaker. 23. pp. 27-32
  5. Gregory, D. S. Ferguson, D. K. Slootman. F. and Luckhoff, J. 1996: I&SM May, pp. 49-52
  6. Steeling, O. 1985: J0M 10, pp. 290-296
  7. Gray, P. R. and Leroy, B. J. 1975: U.S.A Patent 3 885 023
  8. Hager, J. P. Stephens, F. A. and Stephens, F. M. 1994: U.S.A Patent 5 366 897, Nov. 22
  9. Osdoit, B. 1960: Mem, Sc. Rev. Met., 57, pp. 194-199
  10. Nakagawa, H. Murayama, T. and Ono, Y. 1996: Tetsu-to-Hagane, 82, pp. 1-8 https://doi.org/10.2355/tetsutohagane1955.82.1_1
  11. Conejo, A. N. and Martins, G. P. 1997: ISIJ Int., 37, pp. 967-973 https://doi.org/10.2355/isijinternational.37.967
  12. Motlagh, M. 2001: Production of Super Iron Carbides, I&SM December., pp. 94-97
  13. Motlagh, M. 2000: Catalytic Activity of Carbon-Free Iron, I&SM February., pp. 31-38
  14. Hwans, H. S. Chung, U. C. Chung, W. S. Cho, Y. R. Jung B. H. and Martin, G. P. 2004: Carburization of Iron Usine CO-H_2, Gas Mixture, Met. & Mater. Int., 10, pp. 77-82 https://doi.org/10.1007/BF03027366
  15. Flytzani-Stephanopoulos, M. Wong, S. and Schmidt, L. D. 1977: J of Catalysis, 49, pp. 51-56 https://doi.org/10.1016/0021-9517(77)90239-1