Synthesis of Super Iron Carbide from Hematite Fines with $CO-H_2$ Gas Mixture

Hematite系 微粉鑛石을 사용한 $CO-H_2$ 混合 Gas에 의한 高炭化鐵의 合成

  • Chung, Uoo-Chang (Industrial Liaison Innovation Cluster, Pusan National University)
  • 정우창 (釜山大學校 東南圈 部品素材 産學協力 革新事業團)
  • Published : 2004.10.01

Abstract

To investigate the characteristics of phases formed in iron carbides, super iron carbide was synthesized from hematite fines with $CO-H_2$ gas mixture after reduction under $H_2$ gas at $600^{\circ}C$. Before carburization, the surface of iron powder reduced was pre-treated in the atmosphere of 0.05 vol% $NH_3$-Ar. The synthesized iron carbides were comprehensively explored by C/S analyzer(Low C/S determinator), M$\"{o}$ssbauer spectroscopy, X-ray diffraction patterns(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and Raman spectroscopy at various reaction time of 5, 10, 15, 20, 25, 30, and 35 min, respectively. By adding a small amount of $NH_3$ gas, the super iron carbides containing 10 wt% carbon were synthesized, and its addition stabilized iron carbides. It was found that the $NH_3$ treatment played a major role in the formation of iron carbide without decomposition($Fe_3C{\to}$3Fe+C) of iron carbides and precipitation of free carbon. It also succeed to synthesize super iron carbide, $Fe_5C_2$, as a stable single phase without involving Fe and $Fe_3C$ phases.

탄화철을 합성하는 공정을 수소($H_2$) 환원과 $CO-H_2$ 혼합가스에 의한 탄화의 2단계 과정으로 나누어서 수행했다. 환원종료 후 미량의 암모니아 가스를 첨가하여 환원철의 표면을 개질한 후, 탄화시간 경과별 탄화상태를 C/S 분석기(Low C/S determinator), 뫼스바우어 분광 분석기(Mossbauer spectroscopy), XRD(X-ray diffraction patterns), SEM(Scanning electron microscopy), TEM(Transmission electron microscopy), XPS(Photoelectron spectroscopy), 및 라만분광기 (Raman spectroscopy)를 사용하여 조사하였다. 연구결과, 미량의 암모니아가스로 환원철 표면을 개질함으로써 탄화철의 분해 및 유리탄소의 석출을 방지할 수 있을 뿐만아니라 6.68wt% 이상 10wt% 까지 탄소가 과고용된 상태에서도 분해되거나 유리탄소를 석출하지 않고 안정상태를 유지하였다. 이러한 결과로부터 철(Fe)과 세멘타이트(cementite, $Fe_3C$)가 혼합되지 않고 고탄화철(SIC, super iron carbide)인 Fe5C2 상태의 안정한 단일상을 얻는데 성공하였다.

Keywords

References

  1. Gradke. H. J MulIer-Lorenz, E. M. and Schneider, A., 2001: ISIJ Int., 41. pp. S1-S8 https://doi.org/10.2355/isijinternational.41.Suppl_S1
  2. Geiger, G. H. and Stephens, F. A. 1993: Ironnidking Conf. Proc., pp. 333-338
  3. Pollock, B. A. 1993: Iron Steelmaker, 20, pp. 25-29
  4. Garraway., 1996: lron Steelmaker. 23. pp. 27-32
  5. Gregory, D. S. Ferguson, D. K. Slootman. F. and Luckhoff, J. 1996: I&SM May, pp. 49-52
  6. Steeling, O. 1985: J0M 10, pp. 290-296
  7. Gray, P. R. and Leroy, B. J. 1975: U.S.A Patent 3 885 023
  8. Hager, J. P. Stephens, F. A. and Stephens, F. M. 1994: U.S.A Patent 5 366 897, Nov. 22
  9. Osdoit, B. 1960: Mem, Sc. Rev. Met., 57, pp. 194-199
  10. Nakagawa, H. Murayama, T. and Ono, Y. 1996: Tetsu-to-Hagane, 82, pp. 1-8 https://doi.org/10.2355/tetsutohagane1955.82.1_1
  11. Conejo, A. N. and Martins, G. P. 1997: ISIJ Int., 37, pp. 967-973 https://doi.org/10.2355/isijinternational.37.967
  12. Motlagh, M. 2001: Production of Super Iron Carbides, I&SM December., pp. 94-97
  13. Motlagh, M. 2000: Catalytic Activity of Carbon-Free Iron, I&SM February., pp. 31-38
  14. Hwans, H. S. Chung, U. C. Chung, W. S. Cho, Y. R. Jung B. H. and Martin, G. P. 2004: Carburization of Iron Usine CO-H_2, Gas Mixture, Met. & Mater. Int., 10, pp. 77-82 https://doi.org/10.1007/BF03027366
  15. Flytzani-Stephanopoulos, M. Wong, S. and Schmidt, L. D. 1977: J of Catalysis, 49, pp. 51-56 https://doi.org/10.1016/0021-9517(77)90239-1