On the enhancement of the learning efficiency of the self-organization neural networks

자기조직화 신경회로망의 학습능률 향상에 관한 연구

  • Hong, Bong-Hwa (Dept. of Information and Telecommunication, Kyunghee Cyber University) ;
  • Heo, Yun-Seok (Dept. of Electronic Information, Chung Cheong University)
  • 홍봉화 (경희사이버대학교 정보통신학과) ;
  • 허윤석 (충청대학 전자과)
  • Published : 2004.09.01

Abstract

Learning procedure in the neural network is updating of weights between neurons. Unadequate initial learning coefficient causes excessive iterations of learning process or incorrect learning results and degrades learning efficiency. In this paper, adaptive learning algorithm is proposed to increase the efficient in the learning algorithms of Self-Organization Neural Networks. The algorithm updates the weights adaptively when learning procedure runs. To prove the efficiency the algorithm is experimented to classification of strokes which is the reference handwritten character. The result shows improved classification rate about 1.44~3.65% proposed method compare with Kohonan and Mao's algorithms, in this paper.

신경회로망의 학습은 신경사이의 연결강도 갱신과정으로 이루어진다. 이때, 학습계수를 잘못 설정하였을 경우, 과도한 학습 횟수를 요하거나, 올바른 학습을 수행하지 못하게 된다. 패턴분류에 자주 이용되는 코호넨 신경회로망의 경우 고정된 학습계수를 사용하여 연결강도를 일률적으로 갱신하는 방식을 취함으로서 학습효율을 저하시키는 문제점이 발생한다. 본 논문에서는 코호넨 신경회로망의 학습효율을 향상시키기 위하여 학습계수를 입력벡터와 연결강도 벡터의 차에 따라 가변적으로 적응하는 자율학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 검증을 위하여 온라인 필기체의 표준 획 분류에 적용하였다. 그 결과 약 1.44~3.65% 정도의 학습 효율이 향상됨을 고찰하였다.

Keywords