Computation of Nonpremixed Methane-Air Diffusion Flames in Microgravity

무중력에서의 비예혼합 메탄-공기 확산화염의 전산

  • Park, Woe-Chul (Department of Safety Engineering, Pukyong National University)
  • Published : 2004.03.01

Abstract

The structure of the nonpremixed methane-air counterflow flames in microgravity was investigated by axisymmetric simulation with Fire Dynamics Simulator (FDS) to evaluate the numerical method and to see the effects of strain rate and fuel concentration on the diffusion flame structure in microgravity. Results of FDS for the methane mole fractions, $X_m$=20, 50, and 80% in the fuel stream, and the global strain rates $a_g$=20, 50, and $90s^{-1}$ for each methane mole fraction were compared with those of OPPDIF, an one-dimensional flamelet code. There was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional computations. It was shown that FDS is applicable to the counterflow flames in a wide range of strain rate and fuel concentration by predicting accurately the flame thickness, flame positions and stagnation points.

수치법을 검증하고 번형률과 연료농도가 무중력 확산화염 구조에 미치는 영향을 파악하기 위해, 무중력에서의 비예혼합 메탄-공기 대향류 화염의 구조를 FDS의 축대칭 모사로 조사하였다. 연료 중의 메탄 몰분율 $X_m$=20, 50, 80%와 각각의 몰분율에서 변형률 $a_g$=20, 50, $90s^{-1}$의 계산결과를 1차원 화염코드인 OPPDIF의 결과와 비교하였다. 축대칭 모사로 계산한 온도와 축방향 유속의 분포가 1차원 모사 결과와 잘 일치하였다. 화염의 두께와 위치, 정체점을 잘 예측함으로써 FDS를 넓은 범위의 변형률과 연료농도의 대향류 화염에 적응할 수 있음을 확인하였다.

Keywords

References

  1. A Hamins, D. Trees, K Seshadri and HK Chelliab, 'Extinction of Nonpremixed Flames with Halogenated Fire Suppressants', Combustion and Flames, Vol. 99, pp. 221-230, 1994 https://doi.org/10.1016/0010-2180(94)90125-2
  2. K. Marum, M. Yoshida, H. Guo, Y. Ju and T. Niioka, 'Extinction of Low Streched Diffusion Flame in Microgravity', Combustion and Flames, Vol. 112, pp. 181-187, 1998 https://doi.org/10.1016/S0010-2180(97)81766-X
  3. A. Lutz, R.J. Kee, J. Grear and F.M. Rupley, 'A Fortran Program Computing Opposed Flow Diffusion Flames', SAND 96-8243, Sandia National Laboratories, Livermore, CA, U.S.A., 1997
  4. K.B. McGrattan, H.R Bauro, R.G. Rehm, A. Hamins, G.P. Forney, J.E. Floyd and S. Hostikka, Fire Dynamics Simulator Technical Reference Guide, v.3, National Institute of Standards and Technology, Gaithersburg, MD, U.S.A., 2002
  5. W.C. Park, 'An Evaluation of a Direct Numerical Simulation for Cotmtertlow Diffusion Flames', J. Korea Institute for Industrial Safety, Vol. 16, No.4, pp. 74-81, 2001
  6. W.C. Park and A. Hamins, 'Investigation of Velocity Botmdary Conditions in Cotmtertlow Flames', KSME Int'l J., Vol. 16, pp. 262-269, 2002 https://doi.org/10.1007/BF03185178