DOI QR코드

DOI QR Code

Spectroscopic Analysis of Gain Bandwidth in Raman Amplifier with Multiwavelength Pumping Scheme Using Actual Band Model

  • Felinskyi, Georgii (Photonics Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Han, Young-Geun (Photonics Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Sang-Bae (Photonics Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2004.01.09
  • Published : 2004.12.01

Abstract

The spectroscopic model is proposed to analyze the gain bandwidth of a fiber Raman amplifier (FRA) with a multiple wavelength pumping scheme based on Raman gain theory. The oscillatory lineshape, which is the analytic function to analyze Raman gain spectra, allows us to estimate the gain bandwidth of the FRA. Based on the proposed theoretical modeling, we design and analyze the characteristics of the FRA using the combined multiwavelength pumping sources. We achieved the extended gain bandwidth of the FRA over 80 nm with the small gain ripple less than 0.5 dB. Threshold pumping power and effective noise figure for the FRA can be also analyzed by using the proposed model, which is also applicable for versatile fibers with other doping materials. The proposed analysis method can be useful for the design of FRA with the multiwavelength pumping scheme.

Keywords

References

  1. M. N. Islam, 'Raman Amplifiers for Teleoonnmmications,' IEEE J. Sel. Top. Quantum. Electron., vol. 8, no. 3, pp. 548-559, 2002 https://doi.org/10.1109/JSTQE.2002.1016358
  2. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, 'Pump interactions in 100 nm bandwidth Raman amplifier,' IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530-532, 1999 https://doi.org/10.1109/68.759388
  3. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, 'Automatic Design Scheme for Optical-Fiber Raman Amplifiers Backward-Pumped With Multiple Laser Diode Pumps,' IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 948-950, 2001 https://doi.org/10.1109/68.942656
  4. P. Xiao, Q. Zeng, J. Huang, and J. Liu, 'A New Optimal Algorithm for Multipump Sources of Distributed Fiber Raman Amplifier,' IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 206-208, 2003 https://doi.org/10.1109/LPT.2002.806086
  5. Mandelbaum and M. Bolshtyansky, 'Raman Amplifier Model in Single-Model Optical Fiber,' IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1704-1706, 2003 https://doi.org/10.1109/LPT.2003.819760
  6. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, 'Scaling of the Raman Gain Coefficient: Applications to Germanosilicate Fibers,' J. Lightwave Techn., vol. 21, no. 7, pp. 1652-1662, 2003 https://doi.org/10.1109/JLT.2003.814386
  7. M. L. Dakss and P. Melman, 'Amplified Spontaneous Raman Scattering and Gain in Fiber Raman Amplifiers,' J. Lightwave Technol., vol. LT-3, no. 4, pp. 806-813, 1985 https://doi.org/10.1109/JLT.1985.1074270
  8. G. P. Agrawal, Nonlinear Fiber Optics, second ed. San Diego, CA: Academic. 1995
  9. R. Loudon, The Quantum Theory of Light, second ed. Clarendon Press, Oxford, 1983
  10. S. T. Davey, D. L.Williams, and B. J. Ainslie, 'Optical gain spectrum of Ge02 -Si02 Raman fiber amplifiers,' Proc. Inst. Elect. Eng., vol. 136, no. 6, pp. 301-306, 1989
  11. M.D. Mermelstein, C. Horn, S. ROOic, and C. Headley, 'Six-wavelength Raman fibre laser for C- and L-band Raman amplification and dynamic gain flattening,' Electronics Letters, vol. 38, no. 13, pp. 636-638, 2002 https://doi.org/10.1049/el:20020433
  12. J. Bromage, K. Rottwitt, and M. E. Lines, 'A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,' IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 24-26, 2002 https://doi.org/10.1109/68.974149