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Abstract. The exponential better (worse) than used EBU (EWU) class
of life distributions is considered. A moment inequality is derived for
EBU (EWU) distributions which demonstrate that if the mean life is
finite, then all moments exist. Based on this inequality, a new test
statistic for testing exponentiality against EBU (EWE) is introduced .
It is shown that the proposed test is simple, enjoys good power and has
high relative efficiency for some commonly used alternatives . Critical
values are tabulated for sample sizes n = 5(1)40. A set of real data
is used as a practical application of the proposed test in the medical
science.
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1. INTRODUCTION

Ever since the works of Barlow et al (1963) and Bryson and Siddiqui (1969),
various classes of life distribution have been introduced in reliability. Currently the
application of these classes of life distribution can be seen in engineering, social
and biological science, maintenance and biometrics. Therefore, statisticans and
reliability analysts have shown a grown interest in modeling survival data using
classification of life distributions based on some aspects of aging, see for example
Barlow and Proschan (1981)and Zacks (1992). The most well known families of
life distributions are the classes of increasing failure rate (IFR), increasing failure
rate average (IFRA), new better than used (NBU), decreasing mean residual life
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(DMRL), new better than used in expectation (NBUE) and harmonic new better
than used in expectation (HNBUE). For some properties and interrelationships of
these criteria we refer to Barlow and Proschan (1981), Bryson and Siddiqui (1969)
and Klefsjo (1982).

The problem of testing exponentiality versus the classes ( like IFR, IFRA, NBU,
DMRL, NBUE and HNBUE ) of life distributions has seen a good deal of literature
for examles: Proschan and Pyke (1967), Ahmad (1994), Hollander and Proschan
(1972 and 19975) , Kanjo (1993) and Abu-Youssef (2002).

Definition 1.1. A life distribution F, with F(0) = 0, survival function F and finite
mean u is said to be EBU if

F(z +t) < F(t)er , z,t> 0 (1.1)

The dual class of life distributions that is EWU is defined by reversing the
inequality sign of relation (1.1).

Note that, the above defination is motivated by comparing the life length X;
of a component of age ¢ with another new component of life length Y which is
exponential with the same mean as X, this leads to X is EBU if and only if X; <s: ¥
for all t > 0. El-Batal (2002) introduced the above class of life distribution. He
investigated their relationship to other classes of life distribution, closure properties
under reliability operations, moment inequality and heritage property under shock
model. The implication among EBU, NBUE, and HNBUE classes of life distribution
are

EBU - NBUE - HNBUE

The thread that connects most work mentioned here is that a measure of de-
parture from Hy, which is often some weighted function of F, is developed which
is strictly positive under H; and is zero under Hy. Then, a sample version of this
measure is used as test statistics and its properties are studied. In this sprit, the
moment inequality developed in section 2 can be used to construct test statistic for
EBU (EWU). In section 3 this test statistic is based on sample moments of aging
distribution. This test statistic is simple to drive, and has exponentially high effi-
ciencies and power for some of the well known alternatives relative to other tests.
Montecarlo null distribution critical points obtained for sample sizes 5(1)40. Fi-
naly we apply the proposed test to real practical data in medical science given in
Aboummah et al. (1994).
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2. MOMENT INEQUALITY
We state and prove the following result.

Theorem 2.1. If F is EBU (EWU), then

1 1
@iten < (2)g#Hey, T2l (2.1)
where o
wery =+ 1) [ o Fla)de (2.2

Proof. Since F i. \BU (EWU), then

F(z+t) < (2)F(t)e®

Multiplying both sides by "¢, r; > 0,72 > 0 and integrating over (0, cc0), w.r.t.
z and ¢, then

(e’ [o¢] _ o< o] — —z
/ / e F(z + t)dedt < () / / P F (e dzdt  (2.3)
o Jo o Jo
Set £+t = uy,up =t in (2.3). Hence, the left hand side of (2.3) becomes
o0 pul _ 00 _ U1
/ / (u1 — u2)" u? F(u; )dugdu; =/ u{”’”“F(ul)/ (E)T2
0o Jo 0 0

(1-2)rd(=2) = L(rs + DI(r2 + 1) /°° ritra 1

Uy F(uy)du,. (2.4)

Uy Uy L(r; +7re +2)
Using (2.2),(2.4) becomes

/oo /"M2( _ )7‘1 TZF( )d dus = 7‘1!7‘2! (2 5)
o Jo Uy — Uz} " Us" Uy JAUgaUy = (ri + 72 +2)!H(r1+r2+2)- .
The right hand side of (2.3) is given by
/°° /°° "7 F(a)e s dtds = — 1 B g 1) (2.6)
0o Jo (r2 +1) ’
By using (2.5) and (2.6), (2.3) becomes
) € ()i (27)
(ri+rs+ 2)! (ritr2+2) = 1< (re + 1)! (r2+1)

Putting r1 +1=1r9+ 1 = in (2.7), the theorm follows.
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3. APPLICATIONS TO HYPOTHESES TESTING

3.1 Testing against EBU (EWE) alternatives

Let X3, Xo,..., X, represent a random sample from a population with distrib-
ution F. We wish to test the null hypothesis Hy : F is exponential with mean u
against H; : F is EBU (EWU) and not exponential. Using theorem (2.1), we may
use the following as a measure of departure from Hy in favor of H;:

1 1
0p = H by — @riten > (<)0. (3.1)

Note that under Hy : §g = 0, while under H; : g > (<)0. Thus to estimate ég by
é [J let X1, Xa,...,X, be arandom sample from F and p is estimated by X, where
X=1 S X is the usual sample mean . Then d_ is given by using (3.1) as

1 i 1
N n(n—1)..(n~r+1) ;2}; {ﬁnjzlxlek - WXIZ,- } ) (3.2)

where ), extends over all indices 1 > 43 # 4o...... # i, # n. Thus to make the test
statistic scale invariant, we take

0p

n

b
Ap, = —%. 3.3
E, X2r ( )

Setting (X1, X1,y -, X1,, X2) = F1[; X1, X] — iy X{", then Ap, in (3.3) is
a clasical U-statistic, cf. Lee (1990). The foliowing theorem summarizes the large

P

sample properties of Ag, .

Theorem 3.1. As n — 0o, /n(Ag, — Ag) is asymptotically normal with mean 0
and variance

-1 r,,T 2r
2 4y rXap ey + X" XTT 4 g
o =pu Var{ " o) . (3.4)
Under Hy : Ag = 0 and variance o3 is given by
! 1 |
o = (4r)! (2r)!  2(3r)! + 302 _dr, (3.5)

(@r))2 " (2 ri2r)!

Proof: Since Ag, and %}% have the same limiting distribution, we use /n(dg, —

dg,). Now this is asymptotically normal with mean 0 and variance 0% = var{¢(X1)],
where

QS(Xl) = E[¢(X17X27“'XT+1)'X1]+E[¢(X25Xla"-XT+1)'X1]
+E[$(X2, X3, ... Xy, X1)| X4). (3.6)
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But
r X T pey + X[ X +rpr
- - N
#X1) : - (37)
Then (3.4) follows.
Under Hy \
X7 XY
= — - -7 3.8
B0 =X+ k- Gl (38)
Hence (3.5) follows. The Theorem is proved.
When r =1,
1
g, = 12 — Su@), (3.9)

2
in this case 02 = 1 and the test statistic is

dg;, = n('n—l ZZ{XX — —X2}. (3.10)

i#]
and
A Sk,
Ag,, = —;(1— (3.11)

which is quite simple statistics.

To use the above test, calculate \/ﬁAEln /oo and reject Hp if this exceeds the
normal variate value Z;_,. To illustrate the test, we calculate, via Monte Carlo
Method, the empirical critical points of Ag,  in (3.11) for sample sizes 5(1)40.
Tables 3.1 gives the upper percentile points for 95%, 98%, 99% . The calculations
are based on 5000 simulated samples sizes n = 5(1)40.

To asses how good this procedure is relative to others in the literatures, we use
the concept of Pitman’s asymptotic efficiency (PAE). To do this we need to evalute
PAE of the proposed test and compare it with other tests. Since the test statistic
Ag, in (3.3) is new and no other tests are known for these class EBU. We compare
these to some other classes. Here we choose the tests K* and A, presented by
Hollander and Proschan (1975) and Kango (1993) respectively. Note that PAE of
A E. 1S given by

PAE(A(6)) = {;o E(e)|,,q,,o} /0. (3.12)

Two of the most commonly used alternatives (cf. Hollander and Proschan (1972))
are: 0
(i) Linear failure rate family : Fp = e T 5, £>0,0>0
6

(ii) Weibull family L Fy=e, £>0,0>0



110 A moment inequality of exponential better than used

The null hypothesis is at § = 0 for 1inearﬁfa.ilure rate family and 6 = 1 for Weibull
family. Direct calculations of PAE of K*,A,, and Ag,, are summarized in Table 3.2.

Table 3.1 Critical Values of Ag,,

n | 95% 98% 99%
5 | 0.3908 | 0.4310 | 0.4523
6 | 0.3592 | 0.3971 | 0.4240
7 1 0.3384 | 0.3769 | 0.3996
8

9

0.3358 | 0.3733 | 0.3968
0.3203 | 0.3619 | 0.3835
10 | 0.3088 | 0.3502 | 0.3733
11 | 0.3009 | 0.3394 | 0.3634
12 | 0.2877 | 0.3274 | 0.3509
13 ] 0.2886 | 0.3282 | 0.3466
14 | 0.2822 | 0.3164 | 0.3439
15 | 0.2746 | 0.3157 | 0.3370
16 | 0.2726 | 0.3080 | 0.3332
17 | 0.2585 | 0.2959 | 0.3186
18 | 0.2608 | 0.2976 | 0.3153
19 | 0.2521 | 0.2897 | 0.3090
20 | 0.2463 | 0.2831 | 0.3016
21 | 0.2410 | 0.2768 | 0.3035
22 | 0.2413 | 0.2795 | 0.2981
23 | 0.2365 | 0.2703 | 0.2956
24 | 0.2326 | 0.2680 | 0.2862
25 | 0.2321 | 0.2690 | 0.2931
26 | 0.2281 | 0.2573 | 0.2763
27 1 0.2252 | 0.2574 | 0.2749
28 | 0.2204 | 0.2543 | 0.2658
29 | 0.2164 | 0.2521 | 0.2754
30 | 0.2212 | 0.2510 | 0.2714
31 | 0.2173 | 0.2458 | 0.2672
32 | 0.2071 | 0.2413 | 0.2610
33 | 0.2078 | 0.2407 | 0.2608
34 | 0.2101 | 0.2379 | 0.2540
35 | 0.1976 | 0.2288 | 0.2478
36 | 0.1999 | 0.2366 | 0.2555
37 | 0.1986 | 0.2333 | 0.2512
38 | 0.1945 | 0.2291 | 0.2504
39 | 0.1961 | 0.2252 | 0.2439
40 | 0.1956 | 0.2274 | 0.2436
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Table 3.2 PAE of K* A, and Ag,

Distribution | K* | A, | Ag,
F
Linear failure | 0.871 | 0.433 | 1.0000
rate
F
Weibull 0.1.20 | 0.144 | 1.000

From Table 3.2, the test statistic Ag,, is more efficient than A, and K* for linear
failur rate family, but it is more efficient than A,, only for Weibull family.

Finally, the power of the test statistics Ag , is considerd for 95% percentile
in Table 3.1 for three of the most commonly used alternatives [see Hollander and
Proschan (1975)], they are

2

(i)  Linear failure rate : Fy=e %" 7, - rz>0,0>0
(i) Makeham : Fy = e @ 0@+e™-1) 2 >00>0
(iii) Weibull c Fy=e z>0,0>0.

These distributions are reduced to exponential distribution for appropriate values
of 6.

Table 3.3 Power Estimate of Ag,

Sample Size
Distribution | 8 | n=10 | n=20 | n=30
F 2| 0.237 | 0.450 | 0.583
Linear failure | 3 [ 0.285 | 0.537 | 0.678
rate 4]0.320 | 0.588 | 0.753
F, 2| 0.169 | 0.288 | 0.358
Makham 3 1 0.208 | 0.375 | 0.472
410.233 | 0.436 | 0.556
F; 210.740 | 0.978 | 0.994
Weibull 3 (0.994 | 1.000 | 1.000
4 | 1.000 | 1.000 | 1.000

Note that: Since AE,, defines a class (with parameter) r of test statistic, we
choose r that the maximizes the PAE of that alternatives. If we take r = 1 then our
test will have more efficacy than others.

4. NUMERICAL EXAMPLES

Consider the data in Abouammoh et al (1994). These data represent 40 patients
suffering from blood cancer from one of the Ministry of Health Hospital in Saudi
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Arabia and the ordered life times (in days) are 115, 181, 255, 418, 441, 461, 516,
739, 743, 789, 807, 865, 924, 983, 1024, 1062, 1063, 1169, 1191, 1222, 1222, 1251,
1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599, 1603, 1604, 1696,
1735, 1799, 1815, 1852.

_ Using equation (3.11), the value of test statistics, based on the above data is
Apg,, = 0.408. This value leads to the acceptance of H; at the signficance level
a = 0.95 see Table 3.1. Therefore the data has EBU Property.
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