Abstract
This paper addresses an adaptive motion vector prediction algorithm to improve the performance of video encoder. The block-based motion vector is characterized by non-stationary local statistics so that the coefficients of LS (Least Squares) based linear motion can be optimized. However, it requires very expensive computational cost. The proposed algorithm using LS approach with spatially varying motion-directed property adaptively controls the coefficients of the motion predictor and reduces the computational cost as well as the motion prediction error. Experimental results show the capability of the proposed algorithm.
본 논문에서는 동영상 부호화 기의 성능을 개선하기 위한 최소 자송 기반 적응 움직임 벡터 예측 알고리즘을 제안 하고자 한다. 적응 움직임 벡터 예측 방식은 동영상 움직임 벡터의 국부 통계적인 특성의 돌연한 변화로 특정지어 진다는 것을 바탕으로 최소 자승(Least Squared) 기반의 선형 움직임의 계수들을 통계적 특성에 따라 최적화하는 방식이지만 상기 방식은 애우 높은 계산 량을 요구하는 단정을 지니고 있다. 본 논문에서는 공간적인 움직임 변화 방향성을 가지는 최소 자승 최적화를 기반으로 움직임 예측기의 계수를 적응적으로 조절하여 움직임 예측 오류뿐만 아니라 계산 량도 감소시키는 방식에 대해 기술한다. 실험을 통해 제안된 방식의 성능을 확인할 수 있었다.