Identification of Beef Breed using DNA Marker of Coat Color Genes

모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별

  • 정의룡 (상지대학교 생명자원과학대학 생명공학과) ;
  • 정구용 (상지대학교 생명자원과학대학 동물자원학과)
  • Published : 2004.12.01

Abstract

In Korean beef market, one of the major problems is mislabeling or fraudulent distribution of Holstein dairy meat or imported beef as domestic Hanwoo meat. Therefore, there has been a great need for a development of technology to identify beef breeds in meat and meat products. This study was carried out to develop the accurate and reliable method for the identification of beef breed using PCR-RFLP marker of MC1R, MGF and TYRPl genes affecting coat colors in cattle. A single base substitution (G\longrightarrowT transition) at the codon for amino acid position 104 of MC1R gene was identified between Hanwoo and Holstein and Angus breeds. The change at this position creates Msp I restriction site in Holstein and Angus, but not in Hanwoo. When the DNA amplified products (537 bp) was digested with Msp I, Hanwoo meat showed a single band of 537bp, while two fragments of 329bp and 208 bp were observed in Holstein meat and Angus breed, respectively. Thus, breed-specific RFLP marker in the MC1R gene can be used to distinguish between Hanwoo meat and Holstein and Angus meats. In the RFLP genotype of MGF gene, the frequency of r/r type was 75% in Manwoo, whereas the frequency of R/R was 80% in Hereford breed. Holstein and Angus breeds showed 100% for R/r type. Therefore, Hanwoo meat showed significant difference in the MGF genotype frequencies compared with those of Holstein meat and imported beef cattle breeds. However, TYRP1 gene showed the same genotype in all breeds examined. Thus, this TYRP1 gene can not be used as a molecular marker for breed identification. As a consequence, we suggest that RFLP markers of the MC1R and MGF coat color genes could be used as DNA marker for identification of Hanwoo meat from Holstein and imported meats.

본 연구는 축우의 모색발현에 관여하는 MC1R, MGF 및 TYRP1 3종류의 모색 유전자의 PCR-RFLP marker를 이용하여 쇠고기 품종 판별기술을 개발하고자 수행하였다. MC1R 유전자의 104번째 아미노산을 지정하는 codon에 GGT 염기를 갖고 있는 Holstein 젖소와 Angus 육우는 제한효소 인지부위가 존재하여 537 bp증폭산물이 절단되어 329와 208bp 두개의 band가 검출되었으나 한우에서는 GTG로 G 염기가 T염기로 치환됨으로써 제한효소 인식부위가 소실되어 537 bp의 단일 bind 만이 검출되었다. 따라서, 이처럼 MC1R 모색유전자의 품종 간 특정 염기서열의 차이가 곧 특정 제한효소의 염기 서열상의 인지 부위 차이를 가져와 한우와 Holstein 젖소 및 Angus 육우 품종간의 RFLP 유전자형 출현에 확실한 차이가 인정되어 한우 품종에 특이적인 MC1R 유전자의 RFLP marker를 이용한 한우육 판별이 가능하였다. 또한, MGF 유전자의 RFLP 유전자형 출현빈도에서 한우는 r/r형이 75%로 출현율이 매우 높은 유전자형으로 분석된 반면 Hereford종은 R/R 형이 80%로 출현율이 매우 높았고 Holstein종과 Angus종은 R/r형이 100% 출현함으로써 한우와 Holstein 및 수입육우 품종간의 MGF 유전자형 출현빈도에 뚜렷한 차이가 인정되었다. 한편, TYRP1 유전자의 RFLP유전자형을 분석한 결과 모든 품종에서 동일한 RFLP type이 검출되어 TYRP1 모색 유전자를 이용한 쇠고기 품종 구별은 불가능한 것으로 나타났다. 따라서, 소 모색 관련 MC1R과 MGF 두 유전자의 품종 특이적 PCR-RFLP 유전자형은 한우육과 국내산 Holstein젖소고기 및 Angus 수입육간의 품종을 식별하는데 매우 유용한 DNA marker로 이용될 수 있음이 확인되었다.

Keywords

References

  1. Bassam, J B., Caetano-Anolles, G., and Gresshof, P. M. (1991) Fast and sensitive silver staining of DNA in polyacIYlamide gels. Anal. Biochem. 196, 80-83 https://doi.org/10.1016/0003-2697(91)90120-I
  2. Berrere, T. G., Schmutz, S. M, Schimpf, R. J, Cowan, C. M, and Potter, J (2003) TYRPI is associated with dun coat colour in Dexter cattle or how now brown cow. Anim. Genet. 34, 169-175 https://doi.org/10.1046/j.1365-2052.2003.00985.x
  3. Calvo, J. H, zaragoza, P., and Osta, R. (2001) Technical note: A quick and more sensitive method to identifY pork in processed and unprocessed food by PCR amplification of a new specific DNA fragment. J. Anim. Sci. 79, 2108-2112
  4. Cho, B. W. and Han J. Y. (1994) Development of RAPD marker specific for Korean cattle (Hanwoo). Korean J. Anim. Sci. 36, 263-270
  5. Chung, E. R., Kim, W. T., and Han, S. K. (1995) Analysis of DNA polymorphism and genetic characteristics in Holstein dairy cattle using RAPD-PCR technique. Korean J. Anim. Sci. 37, 455-466
  6. Chung, E. R, Kim, W. T, Kim Y. S. and Han, S. K (2000) Identification of Hanwoo meat using PCR-RFLP marker of MCIR gene associated with bovine coat color. J. Anim. Sci. & Technol. 42, 379-390 (in Korean)
  7. Chung, E. R, Kim, W. T, Kim, Y. S., and Han, S. K. (2001) Identification of Hanwoo meat and analysis of polymorphism of bovine MCIR gene using PCR-SSCP technique. J Anim. Sci. & Technol. 43, 45-52 (in Korean)
  8. Ebbehoj, K. F. and Thomsen, P. D. (1991) Species differen-tiation of heated meat products by DNA hybridization. Meat Sci. 30, 221-234 https://doi.org/10.1016/0309-1740(91)90068-2
  9. Hearing, V. J. and Tsukamato, K. (1991) Enzymatic control of pigmentation in mammals. FASEB J 5, 2902-2909
  10. Joerg, H., Fries, H. R., Meijernik, E., and Stranzinger, G. F. (1996) Red coat colour is associated with a deletion in the MSHR gene. Mamm. Genome 7, 317-318 https://doi.org/10.1007/s003359900090
  11. Jones, S. J. and Patterson, R. L. S. (1985) Double-antibody ELISA for detection of trace amounts of pig meat in raw meat mixture. Meat Sci. 15, 1-13 https://doi.org/10.1016/0309-1740(85)90070-1
  12. King, N. L. and Kurth, L. (1982) Analysis of raw beef samples for adulterant meat species by enzyme-staining of isoelectric focusing gels. J. Food Sci. 47, 1608-1612 https://doi.org/10.1111/j.1365-2621.1982.tb04993.x
  13. Klungland, H, Vage, D.I., Gomez-Raya, L., Adalsteinsson, S., and Lien. S. (1995) The role of melanocyte-stinmlating hormone(MSH)receptor in bovine coat colour determination. Mamm. Genome 6, 636-639 https://doi.org/10.1007/BF00352371
  14. Klungland, H, Olsen, H. G., Hassanane, M. S., Mahrous, K, and Vage, D. I. (2000) Coat color gene in diversity studies. J Anim. Breed Genet. 117, 217-224 https://doi.org/10.1046/j.1439-0388.2000.00257.x
  15. Kriegesmann, B., Dierkes, B., Leeb, T, Jansen, S., and Brenig, B. (2001) Two breed-specific bovine MCIR alleles in Brown Swiss and Saler breeds. J. Dairy Sci. 84, 1768-1771 https://doi.org/10.3168/jds.S0022-0302(01)74612-7
  16. Lee, C. S., Yoo, Y. B., Na, K. J., Cho, B. D., and Choe, B. K (1994) Breed identification of Korean native cattle by DNA polymorphic analysis. Korean J. Anim. Sci. 36, 369-373
  17. Macpherson, J. M., Eckstein, P. E., Scoles, G. J., and Gajadbar, A. A. (1993) Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol. Cell Probes 7, 293-299 https://doi.org/10.1006/mcpr.1993.1043
  18. Maudet, C. and Taberlet, P. (2002) Holstein's milk detection in cheeses inferred from melanocortin receptor 1 (MCIR) gene polymorphism. J. Dairy Sci. 85, 707-715 https://doi.org/10.3168/jds.S0022-0302(02)74127-1
  19. Meunier, J. R. and Grimont, P. A D. (1993) Factors affec-ting reproducibility of random amplified polymorphic DNA fingerprinting. Res. Microbiol. 144, 373-379 https://doi.org/10.1016/0923-2508(93)90194-7
  20. Miller, S. A, Dykes, D. D., and Polesky, H F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 https://doi.org/10.1093/nar/16.3.1215
  21. Min, B. R, Han, J. Y, and Lee, M. (1995) The identifi-cation of beef breeds (Korean cattle beef, Holstein beef & imported beef) using random amplified polymorphic DNAs. Korean J. Anim. Sci. 37, 651-660
  22. Patterson, R M., Whittaker, R. G., and Spencer, T. L. (1984) Improved species identification of raw meat by double sandwich enzyme-linked immunosorbent assay. J. Sci. Food Agric. 35, 1018-1023 https://doi.org/10.1002/jsfa.2740350911
  23. Seitz, J. J., Schmutz, S. M., Thue, T. D., and Buchanan, F.C. (1999) A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthom cattle. Mamm. Genome 10, 710-712 https://doi.org/10.1007/s003359901076
  24. Yu, K. and Pauls, K. P. (1992) Optimization of the PCR program for RAPD analysis. Nucl. Acids Res. 20, 2602- 2606 https://doi.org/10.1093/nar/20.10.2602