DOI QR코드

DOI QR Code

Impact of Physical, Chemical and Biological Factors on Lily (Lilium longiflorum cv. Georgia) Pollen Growth and GUS Expression Via Agro-infiltration

물리적, 화학적, 생물적 요인에 의한 백합 (Lilium longiflorum cv. Georgia) 화분의 생장 및 Agro-Infiltration을 이용한 GUS 발현

  • 박희성 (대구가톨릭대학교 식물유전공학과)
  • Published : 2004.12.01

Abstract

To lily (Lilium longflorum cv. Georgia) pollen, impacts by some physical, chemical and biological factors were examined in respects of its growth and transient gene expression via agro-infiltration. Rolling movement in liquid medium or vacuum pressure during Agro-infiltration was regarded as a impact that should be minimized for normal pollen growth. Pollen growth was maintained well in relatively broad range of temperature (19 to 27$^{\circ}C$) or pH (5.0 to 8.0). Chemical factors such as cefotaxime (up to 300mg/L), acetosyringone (up to 800 $\mu$M) and syringealdehyde (up to 800 $\mu$M) did not show any harmful effects but kanamycin severely did even at concentration as low as 25mg/L in some cases. For GUS gene expression, acetosyringone at 200 to 400 $\mu$M slightly improved the efficiency while syringealdehyde did not. Brief agro-infiltration followed by 18 hr of co-incubation of pollen along with Agrobacterium was suggested as a condition basically required for the transient expression system using lily pollen regardless of the presence of acetosyringone.

백합 (Lilium longiflorum cv. Georgia) 화분의 생장과 agro-infiltration에 의한 일시발현에 대한 물리적, 화학적, 생물적 요인의 영향을 분석하였다 화분을 배지에 섞기 위한 물리적 과정이나 agro-infiltration을 위한 진공작업과정은 정상적 화분생장을 위하여 최소화되는 것이 바람직한 것으로 나타났다. 비교적 넓은 범위에서의 온도 (19 to 27$^{\circ}C$)나 pH(5.0 to 8.0)에서 화분의 생장이 유사하게 진행되었으며 화학적 요인으로서의 cefotaxime (300mg/L), acetosyringone (800 $\mu$M), syringealdehyde (800 $\mu$M) 등의 처리는 화분의 생장에 영향을 나타내지 않았다. 그러나 kanamycin의 경우 매우 심한 생장저해현상을 보였는데 25mg/L의 농도에서도 저해현상을 보이는 경우도 있었다. GUS유전자의 화분발현시 acetosyringone(200-400$\mu$M)의 처리에 의하여 그 효율이 약간 향상되는 것으로 나타났으나 syringealdehyde의 경우에는 효과가 없었다. 짧은 시간 내의 agro-infiltration과정과 이어서 18 hr의 화분 및 박테리아의 동시배양으로서도 acetosyringone의 첨가에 상관없이 화분에서의 GUS 일시 발현결과를 얻을 수 있었다.

Keywords

References

  1. Aronen TS, Nikkanen TO, Haggman HM (1998) Compatability of different pollination techniques with microprojectile bombardment of Norway spruce and Scots pine pollen. Can J For Res 28: 79-86 https://doi.org/10.1139/cjfr-28-1-79
  2. Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotech 11: 199-204 https://doi.org/10.1016/S0958-1669(00)00086-0
  3. Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 19: 224-228 https://doi.org/10.1007/s002990050003
  4. Fisher R, Vaquero-Martin C, Sack M, Drossard J, Emans N, Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30: 113-116
  5. Giddings G (2001) Transgenic plants as protein factories. Curr Opin Biotech 12: 450-454 https://doi.org/10.1016/S0958-1669(00)00244-5
  6. Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelet of wheat (Triticum aestivum L.). Plant Sci 72: 233-244 https://doi.org/10.1016/0168-9452(90)90087-5
  7. Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium- mediated transformation. Plant Cell Rep 22: 359-364 https://doi.org/10.1007/s00299-003-0700-z
  8. Jefferson RA (1987) Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol Biol Rep 5: 387-405 https://doi.org/10.1007/BF02667740
  9. Lohrke SM, Yang H, Jin S (2001) Reconstitution of acetosyringone- mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 183: 3704-3771 https://doi.org/10.1128/JB.183.12.3704-3711.2001
  10. Luo ZX, Wu R (1989) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 7: 69-77 https://doi.org/10.1007/BF02669248
  11. McCormick S (1993) Male gametophyte development. Plant Cell 5: 1265-1273 https://doi.org/10.1105/tpc.5.10.1265
  12. Nishihara M, Ito M, Tanaka I, Kyo M, Ono K, Irifune K, Morikawa M (1993) Expression of $\beta$-glucuronidase gene in pollen of lily (Lilium longiflorum) tobacco (Nocotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol 102: 357-361 https://doi.org/10.1104/pp.102.2.357
  13. Park IH, Park HS (2002) Lily pollen growth in vitro and Agrobacterium-mediated GUS gene transformation via vacuum-infiltration. J Plant Biotechnol 4: 151-154
  14. Salas MG, Park SH, Srivatanakul M, Smith RH (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20: 701-705 https://doi.org/10.1007/s002990100374
  15. Schreiber DN, Dresselhaus T (2003) In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Mol Biol Rep 21: 31-41 https://doi.org/10.1007/BF02773394
  16. Tjokrokusumo D, Heinrich T, Wylie S, Potter R, McComb J (2000) Vacuum infiltration of Petunia hybrida with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep 19: 792-797 https://doi.org/10.1007/s002990050009
  17. Watad AA, Yun DJ, Matsumoto T, Niu X, Wu Y, Konomowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep 17: 262-267 https://doi.org/10.1007/s002990050389