DOI QR코드

DOI QR Code

Agrobacterium- mediated Genetic Transformation and Plant Regeneration of Sweetpotato (Ipomoea batatas)

Agrobacterium 매개에 의한 고구마 형질전환 및 식물체 재분화

  • 임순 (한국생명공학연구원 식물세포공학연구실, 충북대학교 원예학과) ;
  • 양경실 (한국생명공학연구원 식물세포공학연구실) ;
  • 권석윤 (한국생명공학연구원 환경생명공학연구실) ;
  • 백기엽 (충북대학교 원예학과) ;
  • 곽상수 (한국생명공학연구원 환경생명공학연구실) ;
  • 이행순 (한국생명공학연구원 식물세포공학연구실)
  • Published : 2004.12.01

Abstract

Transformed sweetpotato (Ipomoea batatas (L.) Lam. cv. Yulmi) plants were developed from embryogenic calli following Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105/pCAMBIA2301 harboring genes for intron $\beta$-glucuronidase (GUS) and kanamycin resistance. Transient expression of GUS gene was found to be higher when embryogenic calli were co-cultivated with Agrobacterium for 2 days. The co-cultured embryogenic calli transferred to selective MS medium containing 1mg/L 2,4-D, 100mg/L kanamycin, and 400mg/L claforan. These embryogenic calli were subcultured to the same selection medium at 4 weeks interval. Kanamycin-resistant calli transferred to hormone-free MS medium with kanamycin gave rise to somatic embryos and then converted into plantlets in the same medium. Southern blot analysis confirmed that the GUS gene was inserted into the genome of the sweetpotato plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the leaf, petiole, and vascular tissue and tip of root.

국내 고구마 율미 품종의 배발생 캘러스를 Agrobacterium 매개 방법을 이용하여 형질전환 식물체를 개발하였다. 배발생 캘러스를 7일 동안 전배양 한 후 Agrobacterium과 2일 간 공동배양할 경우 일시적인 형질전환 효율이 가장 높았다. Agrobacterium과의 공동배양 후 배발생 캘러스를 1mg/L 2,4-D, 100mg/L kanamycin, 400mg/L claforan 이 첨가된 선발배지에서 4주 간격으로 계대배양하였다. 선발된 kanamycin 저항성 캘러스를 2,4-D를 제거한 선발배지로 옮겨 체세포배를 유도하였으며 이후 소식물체로 발달하였다. Southern 분석으로 1-3 copy의 GUS 유전자가 고구마 염색체내로 도입되었음을 확인하였다. 또한 조직학적 분석으로 GUS 유전자가 형질전환 고구마의 배발생 캘러스, 재분화 식물체의 잎, 엽병, 및 뿌리 조직에서 강하게 발현됨을 알 수 있었다.

Keywords

References

  1. Chee RP, Cantliffe DJ (1989) Composition of embryogenic suspension cultures of Ipomoea batatas Poir and production of individualized embryos. Plant Cell Tiss Org Cult 17: 39-52
  2. Dong JZ, McHughen A (1991) Patterns of transformation intensity on flax hypocotyl inoculated with Agrobacterium tumefaciens. Plant Cell Rep 10: 555-560
  3. Gama MICS, Leite Jr RP, Cordeiro AR, Cantliffe DJ (1996) Transgenic sweetpotato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org Cult 46: 237-244 https://doi.org/10.1007/BF02307100
  4. Holford P, Hernandez N, Newbury HJ (1992) Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep 11: 196-199
  5. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
  6. Jeong JH, Han SS, Choi YE (2003) Agrobacterium-mediated transformation of Eleutherococcus sessiliflorus using embryogenic calli and the regeneration of plants. Korean J Plant Biotechnol 30: 233-239 https://doi.org/10.5010/JPB.2003.30.3.233
  7. Kim KY, Kwon SY, Lee HS, Hur YK, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51: 831-838 https://doi.org/10.1023/A:1023045218815
  8. Kwon EJ, Kwon SY, Kim MZ, Lee JS, Ahn YS, Jeong BC, Kwak SS, Lee HS (2002) Plant regeneration of major cultivars of sweetpotato (Ipomoea batatas) in Korea via somatic embryogenesis. Korean J Plant Biotechnol 29: 189-192 https://doi.org/10.5010/JPB.2002.29.3.189
  9. Liu JR, Cantliffe DJ (1984) Somatic embryogenesis and plant regeneration in tissue cultures of sweetpotato (Ipomoea batatas Poir). Plant Cell Rep 3: 112-115 https://doi.org/10.1007/BF02441013
  10. Liu JR, Cantliffe DJ, Simonds SC, Ruan JF (1989) High frequency somatic embryogenesis from cultured shoot apical meristem domes of sweetpotato (Ipomoea batatas). SABRAO J 21: 93-101
  11. Min SR, Liu JR, Rho TH, Kim CH, Ju JI (1994) High frequency somatic embryogenesis and plant regeneration in tissue culture of Korean cultivar sweetpotato. Korean J Plant Tiss Cult 21: 157-160
  12. Min SR, Jeong WJ, Lee YB, Liu JR (1998) Genetic transformation of sweetpotato by particle bombardment. Korean J Plant Tiss Cult 25: 329-333
  13. Moon HJ, Lee BY, Choi G, Shin DJ, Prasad T, Lee OS, Kwak SS, Kim DH, Nam JS, Bahk JD, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100: 358-363 https://doi.org/10.1073/pnas.252641899
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Muthukauar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15: 980-985
  16. Newell CA, Lowe JM, Merrywether A, Rooke LM, Hamiltone WDO (1995) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107: 215-227 https://doi.org/10.1016/0168-9452(95)04109-8
  17. Otani M, Mii M, Handa T, Kamada H, Shimada T (1993) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci 94: 151-159 https://doi.org/10.1016/0168-9452(93)90016-S
  18. Otani M, Shimada T (1996) Efficient embryogenic callus formation in sweetpotato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15: 11-16
  19. Otani M, Shimada T, Kimura T, Saito A (1998) Transgenic plant production from embryogenic callus of sweetpotato (Ipomora batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15: 11-16
  20. Prakash CS, Varadarajan U (1992) Genetic transformation of sweetpotato by particle bombardment. Plant Cell Rep 11: 53-57
  21. Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161: 89-97 https://doi.org/10.1016/S0168-9452(01)00393-4

Cited by

  1. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress vol.49, pp.12, 2011, https://doi.org/10.1016/j.plaphy.2011.09.002
  2. Transgenic Sweetpotato (Ipomoea batatas) Expressing Spike Gene of Porcine Epidemic Diarrhea Virus vol.32, pp.4, 2005, https://doi.org/10.5010/JPB.2005.32.4.263
  3. Overexpression of theIbMYB1gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity vol.153, pp.4, 2015, https://doi.org/10.1111/ppl.12281
  4. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants vol.24, pp.3, 2009, https://doi.org/10.1007/s11032-009-9286-7
  5. Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants vol.338, pp.5, 2015, https://doi.org/10.1016/j.crvi.2015.03.012
  6. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar vol.86, 2015, https://doi.org/10.1016/j.plaphy.2014.11.017
  7. Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene vol.42, pp.1, 2015, https://doi.org/10.5010/JPB.2015.42.1.19
  8. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli vol.233, pp.3, 2011, https://doi.org/10.1007/s00425-010-1326-3
  9. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato vol.17, pp.1, 2017, https://doi.org/10.1186/s12870-017-1087-2