DOI QR코드

DOI QR Code

Agrobacterium tumefaciens을 이용한 대두 형질전환체 개발

Development of Transgenic Soybean Using Agrobacterium tumefaciens

  • 조미애 (㈜유진텍 부설연구소) ;
  • 최동욱 (㈜유진텍 부설연구소) ;
  • 유장렬 (한국생명공학연구원) ;
  • ;
  • 최필선 (㈜유진텍 부설연구소, 남부대학교 생약자원학과)
  • 발행 : 2004.12.01

초록

Agrobacterium과 자엽절 공동배양으로 대두 형질전환체를 생산하였다. 대두 배양재료는 3개의 품종과 1개의 genotype의 자엽절 절편을 사용하였으며, bar유전자와 GUS유전자로 제작된 pPTN289와 pCAMBIA3301벡터를 LBA4401, GV3101, EHA101, C58에 각각 형질전환하여 공동 배양하였고 모든 형질전환 방법은 약간 변형된 Zhang 등(1999)의 방법에 따라 수행하였다. 형질전환빈도는 아그로박테리움의 종류에 따라 현저한 차이가 있었으며, 특히 사용한 균주중 EHA101에서 3.6%로 최대치를 보였다. Glufosinate가 첨가된 선발배지에서 106개의 식물체를 얻었으며, 이중 Thorne에서 5개체, 1049에서 5개체, 백운콩에서 1개체 등 모두 11개로부터 GUS양성반응을 확인하였다. Southern분석과 basta검정법에 의하여 T1세대 식물체로부터 GUS유전자와 bar유전자가 발현되고 있음을 확인하였다.

Agrobacterium tumefaciens-mediated cotyledonary node transformation was used to produce transgenic soybean. Cotyledonary node explants of three cultivars and one genotype were co-cultivated with strains Agrobacterium (LBA4404, GV3101, EHA101, C58) containing the binary vectors (pCAMBIA3301 and pPTN289) carrying with CaMV 35S promoter-GUS gene as reporter gene and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depend on bacteria strain. The EHA101 strain of the bacterial strains employed gave the maximum efficiency (3.6%). One hundred-six lines transformed showed the resistance in glufosinate. Histochemical GUS assay showed that at least 11 plants transformed with the GUS gene were positive response. The soybean transformants were obtained from the Thorne (5 plants), 1049 (5 plants) and Bakun (1 plant), respectively. Southern blot analysis and leaf painting assay revealed that the GUS and bar gene segregated and expressed in their progeny.

키워드

참고문헌

  1. Bauer N, Levanic DL, Mihaljevic S, Jelaska S (2002) Genetic transformation of Coleus blumei Benth. using Agrobacterium. Food Technol Biotechnol 40: 163-169
  2. Cahoon EB, Marillia EF, Stecca KL, Hall SE, Taylor DC, Kinney AJ (2000) Production of fatty acid components of meadowfoam oil in somatic embryos. Plant Physiol 124: 243-251 https://doi.org/10.1104/pp.124.1.243
  3. Choi PS, Komatsuda T, Kim MH, Choi KM, Choi DW, Liu JR (2002) Screening of soybean recombinant inbred lines for high competence somatic embryogenesis. Korean J. Plant Biotech 29: 135-138 https://doi.org/10.5010/JPB.2002.29.2.135
  4. Clemente TE, LaVallee BJ, Howe AR, Conner-Ward D, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate-selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci 40: 797-803 https://doi.org/10.2135/cropsci2000.403797x
  5. Dellaporta SL, Wood J,Hicks JB (1985) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. pp 36-37
  6. Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15: 746-750 https://doi.org/10.1007/BF00232220
  7. Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Eard RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Bio/Technology 13: 577-582 https://doi.org/10.1038/nbt0695-577
  8. Green CE (1982) Somatic embryogenesis and plant regeneration from the friable callus of Zea mays. In: Fujiwara A (ed), Plant Tissue Culture, Maruzen, Tokyo. pp 107-108
  9. Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15: 500-505 https://doi.org/10.1007/BF00232982
  10. Hazel CB, Klein TM, Anis M, Wilde HD, Parrott WA (1998) Growth characteristic and transformability of soybean embryogenic cultures. Plant Cell Rep 17: 765-772 https://doi.org/10.1007/s002990050480
  11. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technol 6: 915-922 https://doi.org/10.1038/nbt0888-915
  12. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
  13. Lee SH, Shon YG, Lee SI, Kim CY, Koo JC, Lim CO, Choi YJ, Han CD, Chung CH, Choe ZR, Cho MJ (1999) Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration. Physiologia Plantarum 107: 338-340 https://doi.org/10.1034/j.1399-3054.1999.100311.x
  14. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol 6: 923-926 https://doi.org/10.1038/nbt0888-923
  15. Meurer CA, Dinkins RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18: 180-186 https://doi.org/10.1007/s002990050553
  16. Muller B, Zumdick A, Schuphan I, Schmidt B (2001) Metabolism of the herbicide glufosinate ammonium in plant cell cultures of transgenic and non-transgenic sugarbeet, carrot, purple foxglove and thorn apple. Pest Manag Sci 57: 46-56 https://doi.org/10.1002/1526-4998(200101)57:1<46::AID-PS256>3.0.CO;2-1
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15 : 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eicholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35: 1451-1461 https://doi.org/10.2135/cropsci1995.0011183X003500050032x
  19. Rhodes CA Lowe KS, Ruby KL (1988a) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6: 56-60 https://doi.org/10.1038/nbt0188-56
  20. Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988b) Genetically transformed maize plants from protoplasts. Science 240: 204-207 https://doi.org/10.1126/science.2832947
  21. Shelp BJ, Swanton CJ, Hall JC (1992) Glufosinate (Phosphinothricin) mobility in young soybean shoots. J Plant Physiol 139: 626-62 https://doi.org/10.1016/S0176-1617(11)80382-2
  22. Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep 19: 485-490 https://doi.org/10.1007/s002990050760
  23. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  24. Stewart CN, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery and characterization of fertile soybean transgenic for synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112: 121-129 https://doi.org/10.1104/pp.112.1.121
  25. Xing AQ, Zhang Z, Sato S, Staswick P, Clemente TE (2000) The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol-Plant 36: 456-463 https://doi.org/10.1007/s11627-000-0082-7
  26. Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium- mediated transformation of soybean. Plant Cell Tiss Org Cult 56: 37-46 https://doi.org/10.1023/A:1006298622969

피인용 문헌

  1. The Use of Glufosinate as a Selective Marker for the Transformation of Cucumber (Cucumis sativus L.) vol.32, pp.3, 2005, https://doi.org/10.5010/JPB.2005.32.3.161
  2. Production of Transgenic Melon from the Cultures of Cotyledonary-Node Explant Using Agrobacterium-Mediated Transformation vol.32, pp.4, 2005, https://doi.org/10.5010/JPB.2005.32.4.257
  3. The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) vol.38, pp.3, 2011, https://doi.org/10.5010/JPB.2011.38.3.198