APPROXIMATION OF THE SOLUTION OF STOCHASTIC EVOLUTION EQUATION WITH FRACTIONAL BROWNIAN MOTION

  • Kim, Yoon-Tae (Department of Statistics, Hallym University) ;
  • Rhee, Joon-Hee (Department of Business and Adminstration, Soongsil University)
  • 발행 : 2004.12.01

초록

We study the approximation of the solution of linear stochastic evolution equations driven by infinite-dimensional fractional Brownian motion with Hurst parameter H > 1/2 through discretization of space and time. The rate of convergence of an approximation for Euler scheme is established.

키워드

참고문헌

  1. COUTIN, L. AND QIAN, Z. (2000). 'Stochastic differential equations for fractional Brownian motions', Comptes Rendus des Seances de l'Academie des Sciences, I331, 75-80
  2. DECREUSEFOND, L. AND \"UST\"UNEL, A. S. (1999). 'Stochastic analysis of the fractional Brownian motion', Potential Analysis, 10, 177-214 https://doi.org/10.1023/A:1008634027843
  3. DUNCAN, T. E., Hu, Y. AND PASIK-DUNCAN, B. (2000). 'Stochastic calculus for fractional Brownian motion I. theory', SIAM Journal-on Control and Optimization, 38, 582-612 https://doi.org/10.1137/S036301299834171X
  4. DUNCAN, T. E., PASIK-DUNCAN, B. AND MASLOWSKI, B. (2002). 'Fractional Brownian motion and stochastic equations in Hilbert spaces', Stochastics and Dynamics, 2, 225-250 https://doi.org/10.1142/S0219493702000340
  5. GRECKSCH, W. AND ANH, V. V. (1999). 'A parabolic stochastic differential equation with fractional Brownian motion input', Statistics and Probability Letters, 41, 337-346
  6. GRECKSCH, W. AND KLOEDEN, P. (1996). 'Time-discretised Galerkin approximations of para-bolic stochastic PDEs', Bulletin of the Australian Mathematical Society, 54, 79-85 https://doi.org/10.1017/S0004972700015094
  7. GY\"ONGY, I. (1998). 'Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I', Potential Analysis, 9, 1-25 https://doi.org/10.1023/A:1008615012377
  8. GY\"ONGY, I. (1999). 'Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II', Potential Analysis, 11, 1-37 https://doi.org/10.1023/A:1008699504438
  9. HAUSENBLAS, E. (2003). 'Approximation for semilinear stochastic evolution equations', Potential Analysis, 18, 141-186 https://doi.org/10.1023/A:1020552804087
  10. HARRINGTON, R. F. (1993). Field Computation by Moments Method, IEEE, New York
  11. MANDELBROT, B. B. AND VAN NESS, J. W. (1968). 'Fractional Brownian motions, fractional noises and applications', SIAM Review, 10, 422-437 https://doi.org/10.1137/1010093
  12. MASLOWSKI, B. AND NUALART, D. (2003). 'Evolution equations driven by a fractional Brownian motion', Journal of Functional Analysis, 202, 277-305 https://doi.org/10.1016/S0022-1236(02)00065-4
  13. PAZY, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York
  14. SHARDLOW, T. (1999). 'Numerical methods for stochastic parabolic PDEs', Numerical Functional Analysis and Optimization, 20, 121-145 https://doi.org/10.1080/01630569908816884
  15. TINDEL, S., TUDOR, C. A. AND VIENS, F. (2003). 'Stochastic evolution equations with fractional Brownian motion', Probability Theory and Related Fields, 127, 186-204 https://doi.org/10.1007/s00440-003-0282-2