ASYMPTOTIC DISTRIBUTION OF DEA EFFICIENCY SCORES

  • S.O. (Institut de statisique, Universite catholique de Louvain)
  • Published : 2004.12.01

Abstract

Data envelopment analysis (DEA) estimators have been widely used in productivity analysis. The asymptotic distribution of DEA estimator derived by Kneip et al. (2003) is too complicated and abstract for analysts to use in practice, though it should be appreciated in its own right. This paper provides another way to express the limit distribution of the DEA estimator in a tractable way.

Keywords

References

  1. GIJBELS, I., MAMMEN, E., PARK, B. U. AND SIMAR, L. (1999). 'On estimation of monotone and concave frontier functions', Journal of the American Statistical Association, 94, 220-228 https://doi.org/10.2307/2669696
  2. JEONG, S.-O. AND PARK, B. U. (2004). 'Large sample approximation of the distribution for convex-hull estimators of boundaries', Scandinavian Journal of Statistics, in print
  3. KNEIP, A., PARK, B. U. AND SIMAR, L. (1998). 'A note on the convergence of nonparametric DEA estimators for production efficiency scores', Econometric Theory, 14, 783-793
  4. KNEIP, A., SIMAR, L. AND WILSON, P. (2003). 'Asymptotics for DEA estimators in nonparametric frontier models', Discussion Paper 0317, Institut de statistique, Universite catholique de Louvain, Belgium
  5. KOROSTELEV, A. P., SIMAR, L. AND TSYBAKOV, A. B. (1995). 'On estimation of monotone and convex boundaries', Publications de l'Institut de statistique de l'Universit\`e de Paris, 39, 3-18