참고문헌
- AHMED, S. E. (2002). 'Simultaneous estimation of coefficients of variation', Journal of Statistical Planning and Inference, 104, 31-51 https://doi.org/10.1016/S0378-3758(01)00121-5
- ALDRIN, M. (1997). 'Length modified ridge regression', Computational Statistics and Data Analysis, 25, 377-398 https://doi.org/10.1016/S0167-9473(97)00015-7
- ANDERSON, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed., John Wiley & Sons, New York
- BANCROFT, T. A. (1944). 'On biases in estimation due to the use of preliminary tests of significance', The Annals of Mathematical Statistics, 15, 190-204 https://doi.org/10.1214/aoms/1177731284
- BANCROFT, T. A. (1964). 'Analysis and inference for incompletely specified models involving the use of preliminary teste(s) of significance', Biometrics, 20, 427-442 https://doi.org/10.2307/2528486
- BERNDT, E. R. AND SAVIN, N. E. (1977). 'Conflict among criteria for testing hypotheses in the multivariate linear regression model', Econometrica, 45, 1263-1277 https://doi.org/10.2307/1914072
- BILLAH, B. AND SALEH, A. K. MD. E. (2000). 'Performance of the PTE based on the conflicting W, LR and LM tests in regression model', In Advances on Methodological and Applied Aspects of Probability and Statistics (N. Balakrishnan, ed.), Gordon and Breach Science Publishers
- BLATTBERG, R. C. AND GONEDES, N. J. (1974). 'A comparison of the stable and Student distributions as statistical models for stock prices', Journal of Business, 47, 244-280 https://doi.org/10.1086/295634
- EVANS, G. B. A. AND SAVIN, N. E. (1982). 'Conflict among the criteria revisited; The W, LR and LM tests', Econometrica, 50, 737-748 https://doi.org/10.2307/1912611
- FOUCART, T. (1999). 'Stability of the inverse correlation matrix. Partial ridge regression', Journal of Statistical Planning and Inference, 77, 141-154 https://doi.org/10.1016/S0378-3758(98)00195-5
- GIBBONS, D. G. (1981). 'A simulation study of some ridge estimators', Journal of the American Statistical Association, 76, 131-139 https://doi.org/10.2307/2287058
- GILES, J. A. (1991). 'Pre-testing for linear restrictions in a regression model with spherically symmetric disturbances', Journal of Econometrics, 50, 377-398 https://doi.org/10.1016/0304-4076(91)90026-A
- GNANADESIKAN, R. (1977). Methods for Statistical Data Analysis of Multivariate Observations, John Wiley & Sons, New York
- GUNST, R. (2000). 'Classical studies that revolutionized the practice of regression analysis', Technometrics, 42, 62-64 https://doi.org/10.2307/1271433
- HAN, C-P. AND BANCROFT, T. A. (1968). 'On pooling means when variance is unknown', Journal of the American Statistical Association, 63, 1333-1342 https://doi.org/10.2307/2285888
- HAQ, M. S. AND KIBRIA, B. M. G. (1996). 'A shrinkage estimator for the restricted linear regression model: Ridge regression approach', Journal of Applied Statistical Science, 3, 301-316
- HOERL, A. E. AND KENNARD, R. W. (1970). 'Ridge regression : Biased estimation for nonorthogonal problems', Technometrics, 12, 55-67 https://doi.org/10.2307/1267351
- JUDGE, G. G. AND BOCK, M. E. (1978). The Statistical Implications of Pre-test and Stein-rule Estimators in Econometrics, North-Holland Publishing Company, Amsterdam
- KELKER, D. (1970). 'Distribution theory of spherical distributions and a location-scale parameter generalization', Sankhya, A32, 419-438
- KENNEDY, P. (1998). A Guide to Econometrics, 4th ed., The MIT Press, Cambridge, Massachusetts
- KIBRIA, B. M. G. (2003). 'Performance of some new ridge regression estimators', Communications in Statistics-Simulation and Computation, 32, 419-435 https://doi.org/10.1081/SAC-120017499
- KIBRIA, B. M. G. AND AHMED, S. E. (1997). 'Shrinkage estimation for the multicollinear observations in a regression model with multivariate t disturbances', Journal of Statistical Research, 31, 83-102
- KIBRIA, B. M. G. AND SALEH, A. K. MD. E. (1993). 'Performance of shrinkage preliminary test estimator in regression analysis', Jahangirnagar Review, A17, 133-148
- KIBRIA, B. M. G. AND SALEH, A. K. MD. E. (2003a). 'Estimation of the mean vector of a multivariate normal distribution under various test statistics', Journal of Probability and Statistical Science, 1, 141-155
- KIBRIA, B. M. G. AND SALEH, A. K. MD. E. (2003b). 'Effect of W, LR, and LM tests on the performance of preliminary test ridge regression estimators', Journal of the Japan Statistical Society, 33, 119-136 https://doi.org/10.14490/jjss.33.119
- KING, M. L. (1980). 'Robust tests for spherical symmetry and their application to least squares regression', The Annals of Statistics, 8, 1265-1271 https://doi.org/10.1214/aos/1176345199
- SALEH, A. K. MD. E. AND HAN, C-P. (1990). 'Shrinkage estimation in regression analysis', Estadistica, 42, 40-63
- SALEH, A. K. MD. E. AND KIBRIA, B. M. G. (1993). 'Performances of some new preliminary test ridge regression estimators and their properties', Communications in StatisticsTheory and Methods, 22, 2747-2764 https://doi.org/10.1080/03610929308831183
- SARKAR, N. (1992). 'A new estimator combining the ridge regression and the restricted least squares methods of estimation', Communications in Statistics-Theory and Methods, 21, 1987-2000 https://doi.org/10.1080/03610929208830893
- SAVIN, N. E. (1976). 'Conflict among testing procedures in a linear regression model with autoregressive disturbances', Econometrica, 44, 1303-1315 https://doi.org/10.2307/1914262
- SEN, P. K. AND SALEH, A. K. MD. E. (1987). 'On preliminary test and shrinkage Mestimation in linear models', The Annals of Statistics, 15, 1580-1592 https://doi.org/10.1214/aos/1176350611
- ULLAH, A. AND ZINDE-WALSH, V. (1984). 'On the robustness of LM, LR and W tests in regression models', Econometrica, 52, 1055-1066 https://doi.org/10.2307/1911199
- ZELLNER, A. (1976). 'Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms', Journal of the American Statistical Association, 71, 400-405 https://doi.org/10.2307/2285322