DOI QR코드

DOI QR Code

Corrosion behavior in SBF and Microstructure of ECAP- Ti and Ti Alloys

ECAP-Ti와 Alloy의 미세구조와 생체유사용액에서의 부식거동

  • Kim Ill-Yong (Department of Materials Engineering, Graduate school of Paichai University) ;
  • Avinash, B. (Department of Materials Engineering, Graduate school of Paichai University) ;
  • Kim Yoon-Jong (Department of Materials Engineering, Graduate school of Paichai University) ;
  • Lee Seung-Woo (Department of Materials Engineering, Graduate school of Paichai University) ;
  • Shin Jong-Woo (Department of Materials Engineering, Graduate school of Paichai University) ;
  • Park Joong-Keun (Department of Materials Science & Engineering, KAIST) ;
  • Lee Sung-Ho (Department of Dental Laboratory, Daejeon Health Science College) ;
  • Kim Taik-Nam (Department of Materials Engineering, Graduate school of Paichai University)
  • 김일용 (배재대학교 대학원 재료공학과) ;
  • ;
  • 김윤종 (배재대학교 대학원 재료공학과) ;
  • 이승우 (배재대학교 대학원 재료공학과) ;
  • 신종우 (배재대학교 대학원 재료공학과) ;
  • 박중근 (한국과학기술원 재료공학과) ;
  • 이성호 (대전보건대학 치기공과) ;
  • 김택남 (배재대학교 대학원 재료공학과)
  • Published : 2004.06.01

Abstract

Ti and Ti alloys are important materials for medical and dental applications. The effect of equal channel angular process(ECAP) and addition of Fe in Ti were studied with optical microstructure and corrosion behavior. Fine grains in Ti was obtained after ECAP. Corrosion behavior of commercial pure(CP)-Ti and Ti alloys was studied by open circuit test and polarization curve test(PCT) at $36.5^{\circ}C$ with SBF in biological environment. The corrosion behavior of ECAP-Ti was similar to that of CP-Ti in PCT, but Ti-Fe alloys were observed to become more corrosive with increasing Fe content.

Keywords

References

  1. J. E. G. Gonzalez and J. C. Mirza-Rosca, J. Electro-analytical Chem., 471, 109-115 (1999) https://doi.org/10.1016/S0022-0728(99)00260-0
  2. N. M. Taher and A. S. AI Jabab, Dental Materials, 19, 54-49, (2003) https://doi.org/10.1016/S0109-5641(02)00008-8
  3. C. Aparicio, F. J. Gil, C. Fonseca and M. Barbosa, J. A. Planell, Biomaterials, 24, 263-273 (2003) https://doi.org/10.1016/S0142-9612(02)00314-9
  4. M. F. Lopez, A. Gutierrez and J. A. Jimenez, Electrochimica Acta, 47, 1359-1364 (2002) https://doi.org/10.1016/S0013-4686(01)00860-X
  5. I. Gurappa, Mater. Characterization, 49, 73-79 (2002) https://doi.org/10.1016/S1044-5803(02)00320-0
  6. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev, Mater. Sci. & Eng. A343, 43-50 (2003) https://doi.org/10.1016/S0921-5093(02)00366-0
  7. S. L. Semiatin and D. P. Delo, Materials & Design, 21, 311-322 (2000) https://doi.org/10.1016/S0261-3069(99)00085-0
  8. I. Kim, J. Kim, D. H. Shin, C. S. Lee and S. K. Hwang, Mater. Sci. & Eng. A342, 302-310 (2003) https://doi.org/10.1016/S0921-5093(02)00318-0
  9. A. Y. Vinogradov, V. V. Stolyarov, S. Hashimoto and R. Z. Valiev, Mater. Sci. & Eng. A318, 163-173 (2001) https://doi.org/10.1016/S0921-5093(01)01262-X
  10. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev, Mater. Sci. & Eng. A299. 59-67 (2001) https://doi.org/10.1016/S0921-5093(00)01411-8
  11. T. Lyman, Metal Handbook, 8th edi., Vol. 8, p141, American Soc. for Metals, (1973)
  12. M. Kamitakahara, M. Kawashita, T. Kokubo and T. Nakamura, Biomaterials, 22, 3191-3196 (2001) https://doi.org/10.1016/S0142-9612(01)00071-0