DOI QR코드

DOI QR Code

Sheet Resistance and Microstructure Evolution of Cobalt/Nickel Silicides with Annealing Temperature

코발트/니켈 복합실리사이드의 실리사이드온도에 따른 면저항과 미세구조 변화

  • Jung Young-soon (Department of Materials Science and Engineering The University of Seoul) ;
  • Cheong Seong-hwee (Department of Materials Science and Engineering The University of Seoul) ;
  • Song Oh-sung (Department of Materials Science and Engineering The University of Seoul)
  • 정영순 (서울시립대학교 신소재공학과) ;
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2004.06.01

Abstract

The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.

Keywords

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er and S. Redkar, Appl. Phys. Lett., 78(20), 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. S. L. Hsia, T. Y Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  4. The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
  5. S. L. Hsia, T. Y. Tan, P. Smith and G. E. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  6. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38(2), 262 (1991) https://doi.org/10.1109/16.69904
  7. R. T. Tung, MRS Symp. Proc., 427, 481 (1996) https://doi.org/10.1557/PROC-427-481
  8. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58(12), 1308 (1991) https://doi.org/10.1063/1.104345
  9. S. P. Murarka, J. Electrochem. Soc., 129, 293 (1982) https://doi.org/10.1149/1.2123815
  10. S. H. Cheong and O. S. Song, Korean J. Mater. Res., 15(5), 279 (2003) https://doi.org/10.3740/MRSK.2003.13.5.279
  11. G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69(23), 3498 (1996) https://doi.org/10.1063/1.117224
  12. D. B. Williams and C. Barry Carter, Transmission electron microscopy: a textbook for materials secience, p.155, Plenum Press, New York, (1996)
  13. A. Lauwers, A. Steegen, M. de-Potter, R. Lindsay, A. Satta, H. Bender and K. Maex, J. Vac. Sci. Technol. B., 19(6), 2026 (2001) https://doi.org/10.1116/1.1409389
  14. M. Y. Wang, C. W. Chang, C. M. Wu, C. T. Lin, C. H. Hsieh, W. S. Shue, M. S. Liang, VLSI Technology Digest, 157, (2003)
  15. M. Garcia-Mendez, M. H. Farias, D. H. Galvan-Martinez, A. Posada-Amarillas and G. Beamson, Surface Science, 532-535, 952, (2003) https://doi.org/10.1016/S0039-6028(03)00133-X