Synthesis of zeolite with reaction temperature and alkali concentration from coal bottom ash

화력발전소 바닥재로부터 합성된 제올라이트의 반응온도와 알칼리 농도에 따른 상변화에 대한 연구

  • 전소연 (한국지질자원연구원 자원활용소재연구부) ;
  • 한기천 (한국지질자원연구원 자원활용소재연구부) ;
  • 안지환 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2004.10.01

Abstract

Though the recycling rate of coal fly ash generated from domestic thermoelectric power plants is gradually increased, at present, the most amount of coal bottom ash is disposed by a landfill instead of recycling. Therefore, to reuse a coal bottom ash as high-value materials the synthesis of zeolite made from a coal bottom ash was investigated in this study. NaPl, hydroxy-sodalite and tobermorite were produced through the alkaline hydrothermal reaction of pulvelized bottom ash at various temperatures; 80, 120, $150^{\circ}C$, and the concentration of NaOH at the range from 1 to 5 M. Especially, NaPl with excellent cation exchange capability had a high crystallinity at ${\leq}2$ M NaOH and ${\leq}120^{\circ}C$.

국내 화력발전소에서 배출되는 석탄회 중에서 비산재의 재활용률은 점점 증가하고 있으나, 바닥재는 현재 전량 매립되고 있는 실정이다. 이에 본 연구에서는 바닥재로부터 제올라이트를 합성함으로써 바닥재의 고부가가치 물질로의 전환 가능성을 알아보았다. 실험을 위해 분쇄한 바닥재를 반응온도$(80,{\;}120,{\;}150^{\circ}C)$ 및 NaOH농도(1~5M)를 변화시키면서 알칼리 수열합성법으로 반응시킨 결과, NaPl, hydrxoy-sodalite, tobermorite 등이 생성되었다. 특히, $120^{\circ}C$ 이하의 온도 및 2M이하의 NaOH농도에서 양이온교환능력이 우수한 것으로 알려진 NaPl이 높은 결정성을 갖는 것으로 나타났다.

Keywords

References

  1. YH. Oh, J.H. Lee and D.H. Lee, 'Synthesis of zeolite A from coal fly ash and adsorption characteristics of synthetic zeolite for ammonium ion', J. Korean Solid Wastes Engineering Society 17(1) (2000) 36
  2. X. Querol, N. Moreno, J.C. Umana and A. Alastuey, 'Synthesis of zeolites from coal fly ash: an overview', International Journal of Coal Geology, 50 (2002) 413-423 https://doi.org/10.1016/S0166-5162(02)00124-6
  3. X. QueroI et al., 'Syntnesis of Na-zeolites from fly ash', Fuel 76(8) (1997) 793 https://doi.org/10.1016/S0016-2361(96)00188-3
  4. X. Querol et al., 'Synthesis of Na zeolites from fly ash in a pilot plant scale. Examples of potential environmental applications', Fuel 80 (2001) 857 https://doi.org/10.1016/S0016-2361(00)00156-3
  5. N. Shigemoto, H. Hayashi and K. Miuaura, 'Selective formation of Na-X, zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction', J. Mater. Sci. 28 (1993) 4781 https://doi.org/10.1007/BF00414272
  6. G.G. Hollman, G, Steenbruggen and M. Janssen-Jurkovic ova, 'A tow-step process for the synthesis of zeolites from coal fly ash', Fuel 78 (1999) 1225 https://doi.org/10.1016/S0016-2361(99)00030-7
  7. S.G. Jeon et al., 'Pyrolysis of waste plastic using synthesized zeolite from fly-ash', Theories and Applicaions of Chemical Engineering (1999)
  8. C.H. Kim et al., 'Synthesis of FAU zeolite from coal fly ash', Applied Chemistry 4(1) (2000) 320
  9. W.H. Roo et al., 'The synthesis of zeolite using fly ash and its heavy. metal adorption performance', HWAHAK KONGHAK 41(1) (2000) 320
  10. M. Cheriaf, J. Cavalcante Rocha and J. Pera, 'Pozzolanic properties of pulverized coal combustion bottom ash', Cement and Concrete Research 29 (1999) 1387 https://doi.org/10.1016/S0008-8846(99)00098-8
  11. S. Mukhtar, A.L. Kenimer, S.S. Sadaka and J.G. Mathis, 'Evaluation of botttom ash and composted manure blends as a soil amendment material', Bioresource Tech. 89 (2003) 217 https://doi.org/10.1016/S0960-8524(03)00085-3
  12. M.Y Kim and S.H. Park, 'A study on the mineral composition of coal ash', KIGAM, KR-95(B)-5 (1995) 38
  13. YS. Shim et ai., 'The adsorpcharacteristics of heavy metals by various particle sizes of MSWI bottom ash', Waste Management 23 (2003) 851 https://doi.org/10.1016/S0956-053X(02)00163-0
  14. N. Murayama, H. Yamamoto and J. Shibata, 'Medlanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction', Int. J. Miner. Process 64 (2002)1 https://doi.org/10.1016/S0301-7516(01)00046-1