Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy

  • 발행 : 2004.12.01

초록

$CuISe_2$ 단결정 박막은 수평 전기로에서 합성한 $CuInSe_2$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 $620^{\circ}C$, $410^{\circ}C$로 고정하여 단결정 박막을 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 선 요동곡선(DCRC) 으로 부터 구하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 293K에서 운반자 농도와 이동도는 각각 $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs 였다. $CuAlSe_2$/Si(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293k에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g$(T)는 Varshni 공식에 따라 계산한 결과 1.1851 eV-($8.99\times10^{-4} eV/K)T^2$/(T+153k)였다. 광전류 스펙트럼으로 부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting Δcr값이 0.0087eV이며 spin-orbit Δso값은 0.2329 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n = 1일때 $A_1-, B_1$-와 $C_1$-exciton봉우리임을 알았다.

A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

키워드

참고문헌

  1. Richard K. Ahrenkiel and T.R. Massopust, 'Heterojunction formation in (Cd,Zn S/$CuInS_2$ ternary solar cells', Appl. Phys. Lett. 43(7) (1983) 658 https://doi.org/10.1063/1.94474
  2. Sigurd Wagner, J.L. Shay and P. Migliorat, '$CuInSe_2$/CdS heterojunction photovoltaic detectors', Applied Physics Letters 25(8) (1974) 434 https://doi.org/10.1063/1.1655537
  3. P. Migliorato and J.L. Shay, 'Analysis of the electrical and luminescent properties of $CulnSe_2$', J. Appl. Phys. 146(4) (1975) 1777 https://doi.org/10.1063/1.321782
  4. C. Rincon and G. Sanchez, 'Luminescence and impurity states in $CulnSe_2$', Crystal Research Technology $1619S_1$, (1983) 1369
  5. D. Haneman and J. Szot, 'Polycrystalline $CulnSe_2$ photoelectrochemical cells', Appl. Phys. Lett. 46(8) (1985) 778 https://doi.org/10.1063/1.95907
  6. V. Riede, H. Neumann and Xuan Nguyen, 'Infrared lattice vibration spectra of $CulnSe_2$', Solid state commucation 28 (1978) 449 https://doi.org/10.1016/0038-1098(78)90836-0
  7. I. Shih, c.a Champness and A. Yahid Shahihi, 'Growth by directional freezing of $CulnSe_2$ and diffused homojunctions in bulk material', Solar Cells 16 (1984) 27 https://doi.org/10.1016/0379-6787(86)90073-6
  8. David Cahen, PJ. Ireland, L.L. Kazmerski and EA. Thiel, 'X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $CulnSe_2$ photo electrodes', J. Appl. Phys. 57(2) (1985) 4761 https://doi.org/10.1063/1.335341
  9. KJ. Hong and T.S. Jeong, 'The optical properties of CdS crystal grown by the sublimation method', Journal of Crystal Growth 218 (2000) 19 https://doi.org/10.1016/S0022-0248(00)00491-7
  10. W. Horig and H. Sobotta, 'The optical properties of $CulnSe_2$ thin films', Thin Solid Films 48 (1978) 67 https://doi.org/10.1016/0040-6090(78)90332-2
  11. KJ. Hong and T.S. Jeong, 'The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy', Journal of Crystal Growth 172 (1997) 89 https://doi.org/10.1016/S0022-0248(96)00725-7
  12. B.D. Cullity, Elements of X-ray Diffractions, Caddson Wesley (1985) chap 11
  13. J. Parkes and M.J. Hampshire, Growth of large $CulnSe_2$ single crystals', J. Appl. Cryst. 6 (1973) 414 https://doi.org/10.1107/S0021889873009027
  14. Elizabeth A. Wood, 'Crystal orientation manual', Columbia university press (1963)
  15. H. Fujita, 'Electron radition damage in cadium-selenide crystal at liquid-helium temperrature', J. Phys. Soc. Jpn. 20 (1965) 109 https://doi.org/10.1143/JPSJ.20.109
  16. V.P. Varshni, 'Far-infrared optical absorption of $Fe^{2+}$ in ZnSe', Physica 34 (1967) 149 https://doi.org/10.1016/0031-8914(67)90062-6
  17. J.L. Shay and J.H. Wernick, Ternary chalcopyrite semiconductor: electronic properties, and applications, pergamon (1975) chap. 4
  18. B. Segall and D.T.E Marple, in : M. Aven and J.S. Prenerin (edss), Physics and Chemistry of II-VI Compounds, North-Holland, Amsterdam (1967) 340