Analyzing Customer Purchase Behavior of a Department Store and Applying Customer Relationship Management Strategies

백화점 고객의 구매 분석 및 고객관계관리 전략 적용

  • 하성호 (경북대학교 경상대학 경영학부) ;
  • 백경훈 (화성산업(주) 동아백화점 전산실)
  • Published : 2004.11.01

Abstract

This study analyzes customer buying-behavior patterns in a department store as time goes on, and predicts moving patterns of its customers. Through them, it suggests in this paper short-term and long-term marketing promotion strategies. RFM techniques are utilized for customer segmentation. Customers are clustered by using the Kohonen's Self Organizing Map as a method of data mining techniques. Then C5.0, a decision tree analysis technique, is used to predict moving patterns of customers. Using real world data, this study evaluates the prediction accuracy of predictive models.

Keywords

References

  1. 곽재민, '통신판매업체의 데이터베이스 마케텅에 관한 연구' 동국대학교 석사학위논문, 2001
  2. 김영아, '시장세분화를 위한 데이터마이닝 응용에 관한 연구',서강대학교 석사학위논문,2001
  3. 김종우,'가상상점에서 고객 행위 연관성 분석을 위한 데이터마이닝 기법', '한국전자거래학회지' 제4권, 제1호(1999)
  4. 박병훈,'RFM 접수를 이용한 고객 반응 분석' 중앙대학교 석사학위논문, 2002
  5. 박병훈,'RFM 접수를 이용한 고객 반응 분석' 중앙대학교 석사학위논문, 2002
  6. 최정환,이유재, ‘죽은 CRM 살아있는 CRM’ 한언, 2001
  7. Anderson, J, Cusianer Relationship Management, Prentice Hall, 1999
  8. Adriaans, P. and D. Zantinge, Data Mining, Addison-Wesley, 1996
  9. Berry, M.J.A. and G.S. Linoff, Mastering Data Mining: The art and Science of Customer Relationship Management, John Wiley & Sons, 2000
  10. Berson, A, S. Smith and K Thearling, Building Data Mining Applications for CRM, McGraw- Hill, 1999
  11. Ciesielski, V. and G. Palstra, 'Using a Hybrid Neural/Expert System for Data Base Mining in Marketing Survey Data,' Proceedings of the Second International Coriference on Knowledge Discovery and Data Mining, 1996, pp.38-43
  12. Ha, SH, S.M Bae and S.c. Park, 'Customer's Time-Variant Purchase Behavior and Corresponding Marketing Strategies: An Online Retailer's Case' Computers & Industrial Engineering, Vol.43, No.4(2002), pp.801-820
  13. Han, J and M Kamber, Data mining concepts andtedniques, Morgan Kaufmann Publishers, 2000
  14. Hughes, AM, Strategic Database Marketing, 2nd ed., McGraw-Hill, New York, 2000
  15. Iutal, D., J Craig and P. Bodorik, 'Enabling and measuring electronic customer relationship management readiness,' Proceedings of the 34th Annuaillawaii International Corterence on System Sciences, 2001
  16. Kiang, M.Y., R.T. Chi and K.Y. Tam, 'A Decision Support System for Market Segmentation - A Neural Networks Approach,' Proceeding of Americas Conference on lnformation System, 1995
  17. Kohonen, T, T.S. Huang and M R. Schroeder, Self-Organizing Maps, Springer Verlag, 2000
  18. Loh, W.Y. and Y.S. Shin, 'Split selection methods for classification trees,' Statistica Sinica; Vol.7(1997), pp.815-84
  19. Mangiarneli, P., S.K Chen and 0. West, 'A Comparison of SOM Neural Network and Hierarchical Clustering Methods,' European Journal of Operational Research, Vol.93, Iss.2(1996), pp.402-417
  20. Mitchell, TM, Machine Learning, McGrawHill, 1997
  21. Mulier, F. and V. Cherkassky, 'SelfOrganization as an Iterative Kernel Smoothing Process,' Neural Computation, Vol.7(1995), pp.1165-1177
  22. Peppard, J., 'Customer Relationship Management in Financial Services,' European Management Journal, Vol.18(2000), pp.312-327
  23. Quinlan J.R., C4.5 : Programs for Machine Learning, Morgan Kaufmann Publishers, 1993
  24. Ryals, L. and S. Knox, 'Cross-functional Issues in the Implementation of Relationship Marketing through Customer Relationship Management,' European Management Journal, Vol.19(2001), pp.534-542
  25. Sharp, D, E., Custaner Relationship Management System Handbook, Auerbach Publications, 2003
  26. Tarn, K Y. and MY Kiang, 'Managerial Applications of Neural Networks : The Case of Bank Failure Predictions,' Management Science, Vol.38(1992), pp.926-947