Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Sea, Bongkuk (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Youn, Min-Young (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Yoon-Gyu (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Dong-Wook (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology)
  • Published : 2004.12.01

Abstract

We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

Keywords

References

  1. H. P. Hesieh, 'Inorganic Membranes for Separation and Reaction,' Elsevier, Amsterdam (1996)
  2. A. M. Rouhi, Chem. Eng. News (May 1995) 29
  3. M. Xu, J. H. Lunsfold, D. W. Goodman, and A. Bhattacharyya, Appl. Catal. A, 149, 289 (1997)
  4. H.-S. Roh, K.-W. Jun, J.-W. Kim, and V. Vishwanathan, Chem. Lett., 33, 598 (2004)
  5. R. P. W. Struis, S. Stucki, and M. Wiedorn, J. Membrane Sci., 113, 93 (1996)
  6. R. P. W. Struis, M. Quintilii, and S. Stucki, J. Membrane Sci., 177, 215 (2000)
  7. F. Gallucci, L. Paturzo, and A. Basile, Chem. Eng. Processing, 43, 1029 (2004)
  8. F. P. Cuperus and R. W. van Gemert, Sep. Purif. Tech., 27, 225 (2002)
  9. A. W. Verkerk, P. van Male, M. A. G. Vorstman, and J. T. F. Keurentjes, J. Membrane Sci., 193, 227 (2001)
  10. R. W. van Gemert and F. P. Cuperus, J. Membrane Sci., 105, 287 (1995)
  11. B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J. Burggraaf, J. Membrane Sci., 116, 161 (1996)
  12. S. Jiang, Y. Yan, and G. R. Gavalas, J. Membrane Sci., 102, 211 (1995)
  13. B. Sea, M. Watanabe, K. Kusakabe, S. Morooka, and S.-S. Kim, Gas Sep. Purif., 10, 187 (1996)
  14. C.-Y. Tsai, S.-Y. Tam, Y. Lu, and C.J. Brinker, J. Membrane Sci., 169, 255 (2000)
  15. B. E. Yoldas, Ceramic Bull., 54, 289 (1975)
  16. D.-W. Lee, Y.-G. Lee, B. Sea, K.-H. Lee, and S.-K. Ihm, J. Membrane Sci., 236, 53 (2004)
  17. B. Sea and K.-H. Lee, J. Ind. & Eng. Chem., 7, 417 (2001)
  18. B. Sea and K.-H. Lee, Bull. Kor. Chem. Soc., 22, 1400 (2001)
  19. D.-W. Lee, B. Sea, K.-H. Lee, and K.-Y. Lee, Ind. Eng. Chem. Res., 41, 3594 (2002)
  20. Y.-G. Lee, D.-W. Lee, S.-G. Kim, M.-Y. Youn, B. Sea, K.-H. Lee, and K-Y. Lee, Bull. Kor. Chem. Soc., 25, 687 (2004)
  21. T. Sano, S. Ejiri, K. Yamada, Y. Kawakami, and H. Yanagishita, J. Membrane Sci., 123, 225 (1997)