High Temperature Oxidation Behavior of Ti$_3$SiC$_2$

Ti$_3$SiC$_2$의 고온산화거동

  • 고재황 (성균관대학교 신소재공학과) ;
  • 이동복 (성균관대학교 신소재공학과)
  • Published : 2004.12.01

Abstract

Ti$_3$SiC$_2$ material was synthesized via the powder metallurgical route, and oxidation tested between 900 and $1200^{\circ}C$ in air for up to 100 hr. The oxidation of $Ti_3$$SiC_2$ material resulted in the formation of $TiO_2$and $SiO_2$, accompanying the evolution of CO or $CO_2$ gases from the initial stage of oxidation. The oxidation resistance of $Ti_3$$SiC_2$ mainly owes the protectiveness of highly stoichiometric $SiO_2$. During the initial stage of oxidation, the dominant reaction was the inward transport of oxygen into the matrix. As the oxidation progressed, an outer $TiO_2$ layer and an inner ( $TiO_2$ + $SiO_2$) mixed layer formed. Between these layers and inside the oxide scale, numerous fine voids formed. Numerous, fine oxide grains formed at $900^{\circ}C$ developed into the outer coarse $TiO_2$ grains and an inner fine ($TiO_2$ + $SiO_2$) mixed grains at the higher temperatures. The oxidation resistance of$ Ti_3$SiC$_2$ progressively deteriorated as the oxidation temperature increased, forming thick scales above $1000^{\circ}C$. The outer coarse $TiO_2$ grains formed above $1100^{\circ}C$ grew rapidly mainly along (211).

Keywords

References

  1. M. W. Barsoum, T. EI-Raghy, L. U. J. T. Ogbuji, J. Electrochem. Soc., 144 (1997) 2508 https://doi.org/10.1149/1.1837846
  2. Z. Sun, Y. Zhou, M. Li, Corros. Sci., 43 (2001) 1095 https://doi.org/10.1016/S0010-938X(00)00142-6
  3. Z. Sun, Y. Zhou, M. Li, Acta Mater., 49 (2001) 43-47
  4. C. Racault, F. Langlais, R. Naslain, J. Mater. Sci., 29 (1994) 33-84 https://doi.org/10.1007/BF00356569
  5. M. W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc., 79 (1996) 1953 https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
  6. S. B. Li, L. F. Cheng, L. T. Zhang, Mater. Sci. Eng., A341 (2003) 112
  7. S. B. Li, L. F. Cheng, L. T. Zhang, Comp. Sci. Tech., 63 (2003) 813 https://doi.org/10.1016/S0266-3538(02)00285-3
  8. N. F. Gao, Y. Miyamoto, D. Zhang, Mater. Let., 55 (2002) 61
  9. M. W. Barsoum, L. H. Ho-Duc, M. Radovic, T. EI-Raghy, J. Electrochem. Soc., 150 (2003) B166 https://doi.org/10.1149/1.1556035
  10. R. Radhakrishnan, J. J. Williams, M. Akinc, J. Alloys Comp., 285 (1999) 85 https://doi.org/10.1016/S0925-8388(99)00003-1
  11. T. Chen, P. M. Green, J. L. Jordan, J. M. Hampikian, N. N. Thadhani, Metall. Mater. Trans., 33A (2002) 1737
  12. A. Feng, T. Orling, Z. A. Munir, J. Mater. Res., 14 (1999) 925 https://doi.org/10.1557/JMR.1999.0124
  13. S. B. Li, J. X. Xie, L. T. Zhang, L. F. Cheng, Mater. Lett., 57 (2003) 3048 https://doi.org/10.1016/S0167-577X(02)01429-5
  14. S. L. Yang, Z. M. Sun, H. Hashimoto, Y. H. Park, T. Abe, Oxid. Met., 59 (2003) 155
  15. Y. M. Chiang, D. P. Birnie III, W. D. Kingery, Physical Ceramics, John Wiley & Sons, NY, (1996) 109
  16. P. Kofstad, Oxid. Met., 44 (1995) 3
  17. G. M. Liu, M. S. Li, Y. Zhang, Y. C. Zhou, Mater. Sci. Eng., A360 (2003) 408