DOI QR코드

DOI QR Code

다층/ART2 신경회로망을 이용한 고장진단

A Fault Diagnosis Based on Multilayer/ART2 Neural Networks

  • 이인수 (상주대학교 전자전기공학부) ;
  • 유두형 (상산전자공업고등학교)
  • 발행 : 2004.12.01

초록

본 논문에서는 비선형시스템에서 발생한 고장을 감지하고 분류하기 위한 신경회로망기반 고장진단 방법을 제안한다. 제안한 알고리듬에서는 시스템의 출력과 다층신경회로망 공칭모델 출력 사이의 오차가 미리 설정한 문턱값을 넘으면 고장을 감지한다. 고장이 감지되면 다층신경회로망과 ART2 신경회로망을 이용한 고장분류기에서 시스템에서 발생한 고장을 분류한다. 컴퓨터 시뮬레이션 결과로부터 제안한 고장진단방법이 비선형시스템에서의 고장감지 및 분류문제에 잘 적용됨을 알 수 있다.

Neural networks-based fault diagnosis algorithm to detect and isolate faults in the nonlinear systems is proposed. In the proposed method, the fault is detected when the errors between the system output and the multilayer neural network-based nominal model output cross a Predetermined threshold. Once a fault in the system is detected, the system outputs are transferred to the fault classifier by nultilayer/ART2 NN (adaptive resonance theory 2 neural network) for fault isolation. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

키워드

참고문헌

  1. J. Wagner and R. Shoureshi, 'A failure isolation strategy for therrnofluid system diagnostics,' ASME J. Eng. for Industry, vol. 115, pp. 459-465, 1993 https://doi.org/10.1115/1.2901790
  2. R. Isermann, 'Process fault detection based on modeling and estimation methods-a survey,' Automatica, vol. 20, no. 4, pp. 387-404, 1984 https://doi.org/10.1016/0005-1098(84)90098-0
  3. M. M. Polycarpou and A. T. Vemuri, Learning methodology for failure detection and accommodation,' IEEE Contr. Syst. Mag., pp. 16-24, 1995
  4. J. C. Hoskins and D. M. Himmelblau, 'Artificial neural network models of knowledge representation in chemical engineering,' Computers Chem. Engng., vol. 12, no. 9, pp. 881-890, 1988 https://doi.org/10.1016/0098-1354(88)87015-7
  5. V. Venkatasubramanian, R. Vaidyanathan and Y. Yamamoto, 'Process fault detection and diagnosis using neural networks-steady state processes,' Computers Chem. Engng., vol. 14, no. 7, pp. 699-712, 1990 https://doi.org/10.1016/0098-1354(90)87081-Y
  6. E. Eryurek and B. R. Upadhyaya, 'Sensor validation for power plants using adaptive back propagation neural network,' IEEE Trans. Nuclear Science, vol. 37, no. 2, pp. 1040-1047, 1990 https://doi.org/10.1109/23.106752
  7. T. Sorsa, H. N. Koivo and H. Koivisto, 'Neural networks in process fault diagnosis,' IEEE Trans. Syst., Man and Cybern., vol. 21, no. 4, pp. 815-825, 1991 https://doi.org/10.1109/21.108299
  8. M. A. Kramer and J. A. Leonard, 'Diagnosis using backpropagation neural networks-analysis and criticism,' Computers Chem. Engng., vol. 14, no. 12, pp. 1323-1338, 1990 https://doi.org/10.1016/0098-1354(90)80015-4
  9. A. Srinivasan and C. Batur, 'Hopfield/ART-1 neural network-based fault detection and isolation,' IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 890-899, 1994 https://doi.org/10.1109/72.329685
  10. 이인수, '신경회로망기반 다중고장모델에 의한 비선형시스템의 고장감지와 분류', 대한전자공학회논문집, vol. 39, no. 1, pp. 42-50, 2002
  11. D. E. Rumelhart and J. L. McClelland, Parallel distributed processing: explorations in the microstructure of cognition. vol. 1, MIT Press, Reading, MA, 1986
  12. S. Y. Kung, Digital Neural Networks, Prentice Hall, 1993
  13. J. D. Cryer, Time Series Analysis, Duxbury Press, 1986

피인용 문헌

  1. Implementation of remote monitoring system for prediction of tool wear and failure using ART2 vol.18, pp.1, 2011, https://doi.org/10.1007/s11771-011-0677-7