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Abstract

In this paper, we present the modeling of time series data which are corrupted by noise via nonsingleton fuzzy logic system. Nonsingleton
fuzzy logic system (NFLS) is useful in cases where the available data are corrupted by noise. NFLS is a fuzzy system whose inputs are
modeled as fuzzy number. The abilities of NFLS to approximate arbitrary functions, and to effectively deal with noise and uncertainty, are
used to analyze corrupted time series data. In the simulation results, we compare the results of the NFLS approach with the results of using

only a traditional fuzzy logic system.
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1. Introduction

Time series data analysis is an important tool for forecasting
the future in terms of past history. A time series is a sequence
of values measured over time, in discrete or continuous time
units. By studying many related variables together, a better
understanding is often obtained. Robust forecasting must rely
on how well the time series is designed. Many techniques for
time series analysis have been developed assuming linear
relationships among the series variables. Unfortunately, many
real world applications involve nonlinearities between
environmental variables. Assuming simple relationships among
time series variables can produce poor results regarding the
ability to predict the future. In many cases, such inaccuracies
can produce major problems [4].

During the past few years, fuzzy modeling techniques have
become an active research area due to their successful
applications to complex, ill-defined and uncertain systems in
which conventional mathematical model fails to give
satisfactory results. Many researchers have proposed many
different techniques. Fuzzy relation model [S], the neural-
network-based fuzzy model [6], Takagi and Sugeno’s fuzzy
linear functional model [7], the fuzzy basis function based
model [8], and fuzzy neural integrated system [9].

The most widely used fuzzifier is the singleton fuzzifier [10]
mainly because of its simplicity and lower computational
requirements. However singleton fuzzifier may not always be
adequate, especially in cases where noise is present in the data.
In other words, if there is some kind of abstraction, uncertainty,
or noise present in the input data, the popular singleton
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fuzzifier used in singletcn FLS may not be adequate. Under
these circumstances, a different approach is necessary to
account for uncertainty in the data. Nonsingleton fuzzifiers
have been used successfully in a variety of applications [11].

In this study, nonsingleton fuzzy logic system [1,2] is
applied to model noisy Box-Jenkin’s gas furnace data [3]. The
Box-Jenkin’s gas furnace data will be demonstrated to show the
performance of the NFLS. We also compare the results of the
NFLS approach with the results of using only a singleton
Mamdani fuzzy logic system (SFLS).

2. Nonsingleton fuzzy logic system

Since the NFLS is applied to Box-Jenkin’s gas furnace time
series data [3], its fundamentals are briefly explained. The
detailed descriptions and formulations of the NFLS can be
found in [1,2]. The overall structure of the NFLS is shown in
Fig. 1. In the figure, crisp inputs are first fuzzified into fuzzy
input sets then activate the inference block.

Nonsingleton Fuzzy Logic System
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Fig. 1. Structure of the nonsingleton fuzzy logic system
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The NFLS is based on the concept of fuzzy set theory, fuzzy
if-then rules, and fuzzy reasoning. Structure of the NFLS is the
same as that of the singleton fuzzy logic system. What is
different is the fuzzifier, which treats the inputs as fuzzy sets,
and the effect of this on the inference block.

Fuzzy sets can be viewed as membership functions uy that
map each elements x of the universe of discourse, U, to a
number uy(x) in the interval [0,1]:

uy :U—-[0,]] 1)

A fuzzifier maps a crisp point xeU into a fuzzy set X,
whose domain of support is a subset of U. The nonsingleton
fuzzifier maps the point x e U into a fuzzy set X with support x;,
where uy achieves maximum value at x7=x and decreases
while moving away from x=x. In other words, measurement
x~x’; is mapped into a fuzzy number in nonsingleton
fuzzification.

Conceptually, the nonsingleton fuzzifier implies that the
given input value x’; is the most likely value to be the correct
one from all the values in its immediate neighborhood,
however, because the input is corrupted by noise, neighboring
points are also likely to be the correct values, but to a lesser
degree. So nonsingleton fuzzification is especially useful in
cases where the available data contain any kind of statistical or
non-statistical uncertainty. NFLS is not only a generalization of
singleton fuzzy logic system but also provide a reconciliation
between fuzzy logic techniques and statistical methods for
handling uncertainty [1].

Here, we consider a pictorial description of input and
antecedent operations for a nonsingleton fuzzy logic system in
Fig. 2. The minimum and product t-norms for a two-antecedent
and single-consequent rule are shown in the figure.

Consider a fuzzy logic system with a rule base of M rules,
and let the /th rule be denoted by R'. Let each rule have n
antecedents and one consequent, i.e., it is of the general form

RYIF ujis Fll and uy is le and---uy,is F,{ @
Then v is Gli= 1,...M

Where u;, k=1,..., n, and v are the input and output linguistic
variables, respectively. Each F, ) and G' are subsets of possibly
different universes of discourse. Let F,i c Uy and =
Each rule can be viewed as a fuzzy relation R'fromasetUtoa
set ¥ where U is the Cartesian productU =U x--xUp. R
itself is a subset of the Cartesian product UxV={(xy):xel,y eV},
where x=(x[,x3,"-",%,), and x; and y are the points in the
universes of discourse Uy and V of u; and v.

Comparing nonsingleton fuzzy inference engine and
singleton fuzzy inference engine, we see that a NFLS first
prefilters its input X, transforming it to X' . This is depicted
in Fig. 3. Doing this accounts for the effect of the input

measurement uncertainty.
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Fig. 2. Input and antecedent operations for nonsingleton fuzzy
logic system
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Fig. 3. Prefilter of the nonsingleton fuzzy system

gl (y)in Fig. 3 is as follows.
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where T and *are short for a t-norm such as minimum or
product.

This is the fundamental equation for a nonsingleton fuzzy
logic system. The bracketed term is the firing level for a NFLS.

When the t-norm is the product and all membership
functions are Gaussian, then it is straightforward to carryout the
(3). The Kth input fuzzy set and the corresponding rule
antecedent fuzzy sets are assumed to have the following
membership functions.

O -m,, )?
1
i (5 = expl—| ——E— ©
o
L Xy
1 (xp —m 1)
(xg) = exp(——| ———E—1) 0]

e 2| o

L k

where k=1,...,nand I=1, ..., M.

Using the rule R, NFLS is constructed and its parameters are
tuned as follows.

M
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.4 Hk 1”Ql (xk max)

8
Az/l: I 1 (X,((’)—m 1)2 ®)
V] expl—— )
2 2 2
=1 k=l +0F/f
M n 1 (x;c') had F[ )2
z Hexp(—a 2 2/(
i=1 k=1 o+ aF/f
it (41) =1 ()=l frs (60 = D1
- mer ) ©®)

7~ fus x5 147
ok+a? ()

k
P+ =50 - aylfrs D) -y Dy (10

UFk, (i+D)= Ol () = agLfrs (37 = 3] x

5 =m0 (in
5O = fus o (0 =)
O'X(z) o l(’)
k
ox(i+1) =0y () - ay[fu(xD) - yDx
D —m () (12)

77 - fy X0 (N ———— P (x?)
G'X(z) +o? o Q)
k

3. Simulation results

We evaluate the performance of NFLS applying it to the
modeling of noisy Box-Jenkin’s gas furnace time series. In
addition, we compare the performance of NFLS with that of
singleton FLS. Box and Jenkin’s gas furnace is a famous
example of system identification. The well-known Box-Jenkins
data set consists of 296 input-output observations, where the
input u(t) is the rate of gas flow into a furnace and the output
y(t) is the CO2 concentration in the outlet gases. The delayed
terms of u(t) and y(t) such as u(t-2), u(t-1), y(t-2), and y(t-1)are
used as input variables to the NFLS. The actual system output
y(t) is used as target output variable for this model. The
performance index (PI) is defined as the root mean squared

P =,/;L—i<y,- —5y (13)

7, is the estimated

€rror

where y, is the actua. system output,
output of each node, and m is the number of data.

Simulation of NFLS is conducted in choosing max-product
composition, product implication, height defuzzification, and
Gaussian membership function.
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(a) Noise-free methene gas flow rate: u(t-2) and u(t-1)
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(b) Noise-free carbon dioxide density: y(t-2) and y(t-1)
Fig. 4. Noise-free Bcx-Jenkin’s gas furnace time series

In Fig. 4, we present the noise-free data which is four input
variables of the Box-Jerkin’s gas furnace time series. In the
figure, (a) and (b) are the delayed terms of methane gas flow
rate u(t) and carbon dioxide density y(t), respectively. We also
depict the one realization of 5dB uniformly distributed noise
data in Fig. 5. Owing to the noise data shown in Fig. 5, input
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data will be corrupted as shown in Fig. 6. In Fig. 6, we plot the
noise corrupted data of Box-Jenkin’s gas furnace time series.
The corrupted data is employed as input variables to the NFLS.

Noise

T T T T T
0 50 100 150 200 250
Time

Fig. 5. One realization of 5dB uniformly distributed noise data
which will corrupt the noise free signals.
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(a) Noise corrupted methane gas flow rate: u(t-2) and u(t-1)
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(b) Noise corrupted carbon dioxide density: y(t-2) and y(t-1)
Fig. 6. Noise corrupted Box-Jenkin’s gas furnace time series to
be employed as input variables for NFLS.

Fig. 7 shows the modeling results of the singleton fuzzy
logic system. SFLS contains 36 fuzzy rules with two MFs for
gas flow rate and three MFs for carbon dioxide density, which
are employed. However, the model outputs do not follow the
actual output very well so the SFLS is unable to handle the
noise.

Modeling results of the nonsingleton fuzzy logic system are
shown in Fig. 8. In the results, NFLS is employed only two
fuzzy sets for each of the four antecedents, so the number of
rules equals 2*=16. In Fig. 9, 36 fuzzy rules are used, here three
MFs for gas flow rate and two MFs for carbon dioxide density
are considered. The estimated result is shown in Fig. 9. As can
be seen from the Fig. 9, the model output follows actual output
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well. Therefore, the NFLS does a much better job of modeling
a noisy time series data than does a SFLS. The value of the
performance index of the NFLS is equal to 0.8493.
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Fig. 7. Modeling results of the singleton fuzzy logic system
with 36 fuzzy rules assigned two MFs for gas flow rate u(t) and
three MFs for carbon dioxide density y(t) (solid line: actual
time series, dotted line: estimated time series)
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Fig. 8. Modeling results of the nonsingleton fuzzy logic system
with 16 fuzzy rules assigned two MFs for each input variable

(solid line: actual time series, dotted line: estimated time series)
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Fig. 9. Modeling results of the nonsingleton fuzzy logic system
with 36 fuzzy rules assigned three MFs for gas flow rate u(t)
and two MFs for carbon dioxide density y(t) (solid line: actual
time series, dotted line: estimated time series)

4. Conclusions

Nonsingleton fuzzy logic system (NFLS) is first applied to
model a corrupted Box-Jenkin’s gas furnace time series data.
The modeling performance of the NFLS is compared to those
of the SFLS. The most commonly used fuzzifier is a singleton,
but such a fuzzifier is not adequate when data is corrupted by
measurement noise.
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Simulation results of the Box-Jenkin’s gas furnace data was
demonstrated to show the performance of the NFLS. As we
seen from the simulation results, the NFLS provide a way to
handle knowledge uncertainty. Meanwhile, SFLS is unable to
directly handle uncertainty. Thus it can be considered NFLS
does a much better job of modeling a noisy time series data
than does a traditional fuzzy logic system.
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