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ABSTRACT

This paper outlines our approach and the underlying design principles aimed at the generation of a theory of coordination. Such
theory would assist in designing new Multi-Agent Systems(MAS) and provide trouble-shooting tools for suboptimally functioning
MAS. This paper also describes the decisions that have been made in this endeavor. We have been able to show via a simplified

model that approach is feasible and can produce results.
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1. Introduction

There is currently much interest in agent societies, following
the early work on naturally occurring cooperative systems
(biological and economic) an¢ on Distributed Artificial
Intelligence (DAI) since the 1980s. The field is mature enough
to benefit from solid theoretical foundations for coordination.
However, coordination tieory is currently ad hoc and
amorphous, in that there is no unified model of coordination,
though there exist many constructs describing specific
phenomena in DAI and MAS. With the impending advent of
large-scale agent-based societies, there is a need for theories
that builders can use in designing such societies, instead of
being forced to learn from trial and error every time such a
society is built.

Social structures may enhance the coordination of agent
activity, such as message management, and the allocation of
resources and tasks. Such structures are alliances, coalitions,
teams and markets of which only the first grouping is
considered for the time beirg. The structures are external to and
independent of individual agents, and would allow the scaling-
down of complex systems consisting of large number of agents.
By reducing the danger of combinatorial explosion in dealing
with the problems of agent cognition, cooperation and control,
we expect to be able to manage the emergent behavior of
individual agents and of alliances of agents.

Cognitive activities, such as decision making, plan
generation and execution, are usually performed jointly by
groups of agents relying oa distributed knowledge, skills and
resources. There is a single group to deal with and to respond to,
instead of an indefinitely large number of individual agents.
This mode of operation leads to higher efficiency as well as to
the possibility of graceful degradation; i.e., whenever a small
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number of operating units become dysfunctional, other units
can take over their responsibilities while the whole system does
not crash but produces useful results, perhaps at a slower pace
and of lower quality.

It will be helpful to provide a precise definition of emergent
phenomena since its interpretation varies in different
disciplines. The term refers to the appearance of patterns (of
properties, actions, results, information, knowledge) that are
not apparent at lower levels. Individual agents and groups of
agents may well be aware of the possibility of emergence and
could strive to enhance or to diminish it and its effects. We can
talk about a reasoning horizon within which agents can predict
emergent phenomena and their effects. A usually more limited
domain is the control herizon within which the agents can
successfully influence higher level events by lower level
activity. This paper considers only the control horizon. Notice
that the formation of group of agents, the actions jointly
decided upon and the norms are emergent phenomena because
they are not under the control of individual agents.

2. Coordination
Coordination has been defined as "the process of managing

activities" [1]. Its
components are the allocation of scarce resources and the

dependencies between fundamental
communication of intermediate results. Coordination is needed
and is usually available also in those cases in which there is no
full cooperation among the agents or group of agents. In a
human society, for example, competition is constrained by
consumer protection, various government agencies and anti-
trust laws. People and organizations antagonistic to one another
may interact via prescribed legal channels. Coordination theory
can be defined as the set of axioms, constructs and analytical
techniques used to create a model of dependency management
in MAS.
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3. On the Generation of A Theory of
Coordination

Validation and verification of state space models, based on
emergent variables, will be done using the simulation model of
a representative MAS. The planned environment for our
experiments, the P-System (P stands for production), represents
a metaphorical and abstract version of an earlier system, the
Distributed Control of Nationwide Manufacturing Operations
system [2,3,4]. The P-System shares characteristic properties
with most MAS and is used for a series of statistically designed
experiments. In the course of running the P-System under
different conditions, we observe and measure data from which
certain high-level, emergent variables can be created. This
paper infers, from the statistical analysis of the data,
characteristic and important descriptors of the organization and
functioning of MAS.
relationships between the evaluated observations and the

It is expected that the resulting

respective properties of the agent societies may produce a
satisfactory theory of coordination, which in turn would
generate design tools and guidelines for the construction of new
MAS, and trouble-shooting tools for analyzing existing MAS.

We hope that the theory being developed will heip in
understanding coordination in general, as well as from the basis
of models of coordination for specific applications. This paper
notes that related empirical work has been done by several
researchers, such as the pioneering projects on the evolution of
cooperation by Axelrod and associates [5].

The P-System creates the following environment:
1) Communication between agents is asynchronous and over
limited bandwidth. It includes request for information, resource
or action; task or resource allocation to agents; a piece of
information; an acknowledgment; etc. Messages can be
broadcasted at large, or sent to selected groups of agents or to
an individual one on the basis of need-to-know and qualified-
to-know.
2) The sequence of manufacturing operations of a given
product defines a hierarchical network of tasks, the P-tree,
which corresponds (is homomorphic) to the problem solving
network needed by the planning process (see Figure 1).
Although the top layer of the P-tree is an AND-tree, each node
can also be associated with an OR-subtree (alternative tasks can
accomplish the given job at the respective process node). Leaf
nodes references raw materials or sub-components provides by
other producers. Higher-level process nodes correspond to
manufacturing/assembly operations.
3) Planning is equivalent to assigning the (metaphorical)
manufacturing/ assembly operations to resources over space
and time. An agent with a higher-priority task (see below) can
obtain a needed resource from another agent with a lower-
priority task. The latter task is performed with a less
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satisfactory resource (more expensive or slower) or preempted
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Figure 1. The metaphorical production tree, the P-tree

4) Resource availability (tools for the assembly/manufacturing
operations) may change intermittently or regularly. Idle
allocated resources and the (temporary) storage of components
also cost money. The total range of resource availability has
four subranges: (a) infeasible the production process cannot
function for lack of indispensable resources; (b) deficient the
production process can function only if some resources are
transferred between process nodes at opportune moments
(balancing the costs of transfer and component storage); {(c)
scarce some tasks must be allocated suboptimal resource
types; (d) abundant every task can be allocated the optimum
resource type.

5) Tasks may be priority-oriented or deadline-oriented. The
former implies that each task associated with the completion of
a component must be well-coordinated with the completion of
its sibling, ancestor and descendent components. Tasks in the
deadline-oriented category have a deadline by which they have
to be performed to satisfy the completion constraints of the
final product.

6) There are three tiers in resource taxonomy: (a) resource
category (every item in a category can be used for one or more
tasks); (b) a resource category contains one or more resource
types(a given task can be performed at different cost or time
levels, depending on the type chosen); (c) one or more resource
instances exist within each resource type these are the ones
actually allocated to tasks.

7) Agents are associated with each process node, resource
category and resource type, are spatially and functionally
distributed, assume different levels of autonomy and different
capabilities in network perception (for reactive behavior),
modeling other agents and the environment (for predictive
behavior), maintaining network coherence, communication and
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negotiation, short-term and long-term planning, adherence to
different coordination and cooperation regimes, plan generation
and execution for time-critical tasks. 8) Two objective
functions can be used: the P-System is to produce a given
number of final products either (a) at @ minimum cost within a
given period of time, or (b) at a given cost within a minimum
period of time. Both of these require an optimum allocation
schedule of the manufacturing/assembly operations and
resources to individual agents over space and time, while
satisfying a set of constraints.

9) There are Manager Agents with different responsibilities. A
top-level Monitor Manager collects and processes information
from the other Managers, and stores it in a knowledge base.
The Message Manager intercepts each message, records the IDs
of the agents that originate, transmit and receive it, as well as
categorizes and stores them according to their contents type in
a Message Database. (This is crucial for the development of the
trouble-shooting tool.) The Coordinative Process Manager is
concerned with solution synthesis, reinforcement (such as the
support in the
scheduling processes (tasks and resources). The Manager of
Negotiating Processes assesses how agreements and decisions

coordinator-coworker relationship), and

are made and kept. The Manager of Neutral Processes observes
the cost and the effect of learning processes. The Constraints
Manager identifies the cost/benefit ratio of inherent and
imposed constraints (capabilities, classes, timing, costs,
capacities, resource availability). The collected information is
processed by the Statistical Analyzer Manager.

In order to attain a high-level of generality, we have
originally defined 25 control variables (CVs) that characterize
tasks, agents, resources, skills, production processes, relative
cost functions, events and constraints. For each experiments (a
run of the P-System), particular CV values are automatically
selected by the Experimental Design Generator according to a
multi-tier, balanced, incomplete, factorial design (see section
4.2).

4. Empirical Explorations

Significant effort has been spent on identifying a reliable but
combinatorially not explosive technique to obtain results that
can show the method of computation and prove the feasibility
of the approach. This paper lists some of the decisions made
along this line.

4.1 The Quality Measure of Coordination (QMC)

The metaphoric model of the manufacturing/assembly
operation in the P-System is optimally coordinated if
subcomponents arrive at every process node simultaneously
and at the required rate while the total production cost or time

is minimized and the total production time or cost, respectively,
is kept under its allowed level. This leads to our definition of
the Quality Measure of Coordination (QMC), based on the
concept of synchronization and supply balancing,

TLE 4
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Here 1 is a level number, 1(j) references the level where the
jth node is, ;* is the best possible time associated with
assembly/manufacturing at node lj (the j-th node at level 1), t; is
the actual time used after local and global optimization (these
terms refer to systematic resource exchanges when needed).
The weighting factor in the numerator, 1, expresses the fact that
deficient synchronization and supply balance has a detrimental,
cascading effect on coordination at the levels above the process
node in question. (The ower the node level, the worst the
effects are.) The denominator normalizes QMC to the range
[o,11.

The optimization of QMC under different conditions and its
relationship to judiciously chosen functional combinations of
CVs, the emergent variables, play a central role in this research.

4.2 The Statistical Experiment Design

CVs determine the functional and operational characteristics
of the P-System and produce emergent behavior. The emergent
variables, one or a combination of a few CVs, represent the
aspects noted before. Some CVs are categorical variables of
qualitative nature; e.g.,, whether resource allocation is
preplanned or reactively performed during the run of the P-
System. Most CVs are, however, quantitative. The expectedly
relevant CVs belong to one of the following groups: 1) skill-
related, 2) resource-related, 3) task-related, 4) agent-related, 5)
inventory-related, 6) procuction- related, 7) event-related, 8)
constraints-related (identity, capability, class, capacity and
temporal). To develop a demonstration system, we have
drastically reduces the number of CVs to 12. These are
resource-, task- or inventory-related. We have also left out all
event- and agent-related CVs, and postponed the study of
reactive planning and message traffic until later.

The statistical design of experiments needs some novel ideas.
The design process consists of two phases. The first phase deals
with a subset of the Total Number of Qualitative Designs of
experiments, TNQD, called NQD. We identify five equally-
sized qualitative subranges of the total quantitative range of
each CV: very low, low, medium, high, very high. Thus, if
TNQD = 5712 (there are 12 quantitative CVs currently), an
arbitrary subset of this can be obtained by generating NQD
random numbers between 1 and TNQD, each pointing to a
qualitative design selected. (This heuristic must be used since
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there are no symmetrical, balanced, fractional experimental
designs available for such high number of control variables.)
The second phase of this design process leads to actual
quantitative computer-based experiments. Every qualitative
design obtained in the first phase is used to carry out a
sufficiently large Number of Quantitative Experiments (NQE),
i.e.,, runs of the P-System. We assign randomly chosen
quantitative values to each CV within their respective current
qualitative subrange. The QMC values are computed while the
objective function can be minimum total time or minimum total
cost. This approach assures a high level of generality in the
findings.

In order to obtain optimum precision in the results, given the
total length of computing time, how much time should be spent
in considering different qualitative designs and how many
quantitative experiments should be performed for each
qualitative design. An interesting heuristics leads to the
meaningful ratio between NQD and NQE. The basis of the
heuristics is that the total variance of the resulting QMC values
is made up of three components - the first one is due to the
different qualitative designs selected, the second one is due to
the different actual quantitative experiments that belong to the
same qualitative design, and a third one is a random scatter not
related to ant manageable factor. The calculation of the first
two components is now explained by the following example.
Assume that we have NQD = 4 (four qualitative designs are
selected) and NQE = 3 (each qualitative design has three actual
quantitative experiments associated with it). In the following
Table 1, QMC is denoted by Q.

The variance due to different qualitative designs is Var(QD)
= Var(Av(Qj)), which is the variance of the items in the third
column. Further, the variance due to different quantitative
experiments is Var(QE) = Av(Var(Qy)). The ratio Var(QD)/
Var(QE) should be the ratio of the times allocated to QD and
QE, respectively - the idea being that the larger the variance of
an item is, the more time should be spent on its measurement.

Table 1. How to divide up total processing time

Qualitative | QMC Values in Quant. Avg.of | Variance of
Design Experiments QMCs QMCs
1 Qi1 Qi2, Qi3 Av(Qy) Var(Qu)
2 Qz1, Qz2, Qz Av(Qy) Var(Qy)
3 Qs1, Qs2, Q3 AV(Qs) Var(Qy)
4 Qar, Quz, Qa3 Av(Qy) Var(Qy)

4.3 Miscellaneous Decisions

In order to run the P-System, we had to decide on the
number of final products (NFP) first to be produced by the P-
System in the experiments while QMC having a fairly steady
value beyond NFP. There are several factors that may cause
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difficulties in this regard. Such are the "running-in" and
"running -out" times for the P-System. During the former
period, the assembly/manufacturing operations start at the
bottom of the P-tree and gradually reach its root from where the
first final product leaves. From this point, the P-System works
continuously and the completion rate of the final product
should be constant. Similar issues arise during the running-out
phase when node activity gradually disappears from the bottom
of the tree upwards. We have found that continuous and steady
production is experienced after the first three final products
leave the root of the P-tree; thus NFP = 4 was chosen. It is
important to characterize each member of the set of
experiments by the Resource Availability category it belongs.
We can then make relevant conclusions concerning the effects
of less than abundant resources - the infeasible, deficient and
scarce cases - on production time and cost aspects.

5. The Computational Approach

Having identified the ratio r = Var(QD)/Var(QE) = 60, we
specified NQD = 11,000 (out of which 2,400 qualitative
designs proved to be in the Infeasible Resource category).
Instead of the "expected" NQE = 871,200, we obtained 860,282.
In addition to the 12 CVs considered in the experiments, the
successfully completed experiments were also assigned a value
of the categorical variable RA (Resource Availability) as
deficient=1, scarce=2 or abundant=3. The average execution
time of a quantitative experiment was 334.51 ms and the size of
the output file was 61.8 MB.

Table 2 describes the currently used list of CVs, the RA and
QMC, their notation (the x's), and their role in the P-System.
We emphasize that the reduced set of independent variables is
not sufficient to produce acceptable results because of their
numerous latent relationships among themselves and with the
dependent variable QMC. As stated before, our major objective
in the work described is to prove the feasibility of our approach.

The Principle Component/Factor Analysis program and other
parts of the SPSS statistical package have produced, among
others, the following relevant results: 1) A 14*14 Correlation
Matrix of the 13 independent variables and QMC. 2) Six
factors, F's, linear combinations of the x's, have zero
correlations among themselves and high correlations with
QMC. 3) A series of regression functions, models, that connect
MQC, on one hand, and - via the F factors - the x variables, on
the other. The final, 24-th model, chosen by us, has the highest
number of terms, 24, each with statistically significant
correlation with QMC and no cross-correlation among the
terms.
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Table 2. The dependent variable, the independent variables and
their function

Variables | Notation System Function
CVl1 Xy Number of Resource(Res.) Categories
Ccv2 X2 Number of Res. Types per Res. Category
Cv3 X3 Number of Res. Instances per Res. Type
Cv4 X4 Cost of Res. Type working per task difficulty
and per unit time
CVs Xs Time necessary for Res. Type to accomplish
work per task difficulty
‘ CVe6 Xe Time necessary to transfer a Res. Instance
l between two process nodes
" cv7 X7 Cost necessary to transfer a Res. Instance
j between two process nodes
| CVve X Number of Task Categories
‘ CV9 Xo Number of Task Types per Task Categories
‘: CV10 Xio Numbe: of Skills OR-ed per Task Type
CVIl Xy | Storage cost per subcomponent piece per unit
1 time
g CV12 | xp Maximum storage size
. RA X131 Resource Availability (categorical variable)

QMC Q 'LQuality Measure of Coordination

The six mutually orthogonal factors "explaining" the QMC
are:
Fi=b+ by X3+ b X3
Fa=Db4+ b5.X5+ be.X;

b, = 0.736, by = 0.123, b;=-0.017,
bs=0.891, bs=-0.471, bs=-0.010,

F3= b, + bg.Xs by = 0.775, by = -0.004,
Fa=bo+big.X; + b11.Xs  bo=0.773, bjo= 0.009, b,, = 0.003,
Fs=by,+b13.Xo byp=0.778, b3 = -0.016,

Fe=bys+ bys.Xy bys=0.775, b5 = -0.004.

The Regression Function of Model 24 is accepted as:
Q=ay + a.F; +a,.F, + a3.F; + a.Fy + as.Fs + ag.Fg + a,.F;"2 +
ag.Fy"2 + agF3"2 + a;o0.F4"2 + a,.Fs"2 + ap.Fg™2 +
a;3.F1.Fy + aiFi.Fs + as.Fi.Fy + a16.F.Fs + a0.F.Fg +
a13.F2.F3 +a10.F2.F4 + a5.Fo.Fs + a5.F,.Fg + an.F3.Fy +
a53.F3.Fs + ay4.F3.Fg + a5.F4.Fs + ay5.F4.Fg + 857.F5.F¢
with
ag=0.784, a; = 0.161, a; = -0.343, a3 =-0.135, a, = -0.137, a5 =
0.150, as = -0.047, a; = 0.007, ag = -0.059, ay = -0.033, ajp = -
0.022, a;; = -0.02, a;; = 0.0, a;; = -0.04, a4 = 0.215, a;s = -
0.175, aj = -0.218, a;7 = 0.053, a3 = 0.006, a0 = 0.0, ayg = -
0.003, ay; = -0.003, ay; = 0.040, ay; = 0.027, ay, = 0.0, aps = -
0.029, a6 = 0.011, a7, =0.120.

We have set each equation(k = 1, 13) to zero:
be(a; + a13.F + 283.F; + a1g.73 + 839.F5s + a5;.Fg) =0
bs(a; + 2a;.F, + a;3.F, + aj4.F; + a;5.F4 + a;6.Fs+ a17.Fg) =0
bs(az + a14.Fy + ajg.Fo+ 2a4.F3 + app.Fy + 253.Fs) =0

bis(ag + a17.F) + a5 .F2+ ag.Fy + a7 F5) =0
bn(a4 + a15.F1 + 322.F3 + 2310.F4 + 825.F5 + a26.F6) =0
bis(as + a16.F1 + ay.Fo + a3 F3 + a35.F4 + 2a;1.Fs + a37.F¢) = 0

The above equations can be solved for the F's and,
subsequently, for the values x; by using, for example, the
mathematical programmir.g package Maple. Checking whether
Q is maximum is a little more complicated but several
techniques are available in the literature on numerical
optimization.

6. Related Work

Most existing research in DAI adopts a solution-oriented
approach, as opposed to a theory-oriented approach, and is
directed at demonstratirg the validity of constructs and
approaches for modeling specific phenomena or solving
specific classes of probtlems. However, there are several
exceptions as follows.

Lesser and Decker [6,8,13,14] conducted research directed at
the design of coordination mechanisms using their
effectiveness on the characteristics of the tasks and the
environments. Huberman and associates [7,9,10,11] have
worked on statistical phys: cs-based models of Intelligent Agent
Systems in relation to resource contention and predictive
behavior. Gasser gives a detailed account of the range of DAI
approaches to coordinetion[12]. Findler and associates
examined variations in system behavior in terms of variations
of the precision of agents' models [15,15,17,18]. We also single
out the excellent book by Cohen on empirical methods in
Artificial Intelligence [19].

7. Conclusions

We can state that coordination is a combination of a variety
of mechanisms aimed at substituting for the unattainable
perfect world of complete and uptodate knowledge of goals,
plans, actions and interactions as well as of agents' unlimited
processing and communication power. This is done by means
of an appropriate and adaptive organizational structure (well-
balances division of labor and flexible interaction among
agents), exchanging meta- level information (e.g., control
information, planning methods, credible commitments, joint
model building of the environment), and reducing logical
coupling and resource dependencies of agents (effective
techniques for task allocation, resolving resource conflicts and
logical contradictions, and the like).

In this exploratory work, we have outlined and proven the
feasibility of an approach that can lead to quasi-optimum
coordination in a characteristic subset of MAS. Because of the
limited number of control variables (CVs) incorporated in the
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system at this stage, this paper does not present the quantitative
aspects of their role in the management of coordination.
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