Journal of Internet Computing and Services (인터넷정보학회논문지)
- Volume 5 Issue 2
- /
- Pages.69-73
- /
- 2004
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
Safety Robust Speaker Recognition Against Utterance Variationsed
발성변화에 강인한 화자 인식에 관한 연구
Abstract
A speaker model In speaker recognition system is to be trained from a large data set gathered in multiple sessions. Large data set requires large amount of memory and computation, and moreover it's practically hard to make users utter the data inseveral sessions. Recently the incremental adaptation methods are proposed to cover the problems, However, the data set gathered from multiple sessions is vulnerable to the outliers from the irregular utterance variations and the presence of noise, which result in inaccurate speaker model. In this paper, we propose an incremental robust adaptation method to minimize the influence of outliers on Gaussian Mixture Madel based speaker model. The robust adaptation is obtained from an incremental version of M-estimation. Speaker model is initially trained from small amount of data and it is adapted recursively with the data available in each session, Experimental results from the data set gathered over seven months show that the proposed method is robust against outliers.
화자인식 시스템에서 화자 모델은 여러 세션동안 수집된 많은 양의 데이터 집합으로 등록한다. 많은 양의 데이터 집합은 많은 양의 메모리와 계산을 필요로 할 뿐 아니라, 게다가 사용자가 음성 등록을 위하여 여러 번에 걸쳐서 발성해야 하는 문제점이 있다. 최근, 이러한 문제를 보완하기 위해서 많은 적응 방법들이 제안되었다. 그러나, 여러 세션동안 모아진 데이터 집합은 불규칙한 발성 변화와 잡음 같은 이상치에 취약하고, 그것은 부정확한 화자 모델을 만든다. 본 논문에서는, GMM에 기초를 둔 화자 모델에 이상치들의 영향을 최소화하기 위한 적응 방법을 제안하였다. 강인한 적응은 M-추정의 점진적인 방법으로부터 얻어진다. 화자 모델은 초기에 적은 양의 데이터로 등록되어지고, 각각의 세션에서 얻어진 데이터로 반복적으로 적응시킨다. 실험 결과는 7개월에 걸쳐서 수집된 데이터 집합으로부터 제안된 방법이 이상치에 강인하다는 것을 보여준다.