Evaluation of ISSR and RAPD Markers for the Detection of Genetic Diversity in Mulberry (Morus spp.)

  • Venkateswarlu, M. (Seribiotech Research Laboratory) ;
  • Nath, B.Surendra (Seribiotech Research Laboratory) ;
  • Saratchandra, B. (Seribiotech Research Laboratory) ;
  • Urs, S.Raje (Seribiotech Research Laboratory)
  • Published : 2004.12.01

Abstract

The present study was carried out to evaluate the ISSR and RAPD markers for their efficiency as genetic marker systems to establish the relationships between 18 mulberry genotypes. A total of 36 from 56 (64%) RAPD primers and 12 from 48 (25%) ISSR primers produced reproducible amplification patterns. A high proportion of polymorphic bands ranging from 44 to 91% was observed respectively with RAPD and ISSR markers. The average Resolving Power (Rp) of ISSR primers was higher than RAPD primers. The ISSR primers, UBC 825, 868 and 873, and RAPD primers, UBC 712, 720 and 729, possessed the highest Rp values and could in each instance distinguish all the 18 genotypes. Similarity matrix values were estimated based on Jaccards coefficient, considering 109 polymorphic ISSR and 212 polymorphic RAPD bands and two dendrograms were constructed. The dendrograms obtained with ISSR and RAPD markers distinguished the eight exotic genotypes from the ten indigenous (Indian) genotypes. A significant correlation value (r=0.959; p=0.001) for the cophenetic matrix between the RAPD and ISSR matrices was observed. The results indicated that the ISSR and RAPD markers could assist in the differentiation of genotypes and permit the determination of genetic distances that might be exploited by mulberry breeders in improvement programs.

Keywords

References

  1. Bartish, I. V., L. P. Grakava, K. Rumpunen and H. Nybom (2000) Phylogenetic relationships annd differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor. Appl. Genet. 101, 54563
  2. Bhattacharya, E. and S. A. Ranade (2001) Molecular distinction amongst varieties of mulberry using RAPD and DAMD profiles. BMC Plant Biology 1, 3-12 https://doi.org/10.1186/1471-2229-1-3
  3. Blair, M. W., O. Panaud and S. R. McCouch (1999) Inter- simple sequence repeat (lSSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98, 780-792 https://doi.org/10.1007/s001220051135
  4. Casasoli, M., C. Mattioni, M. Cherubini and F. Villani (2001) Genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor. Appl. Genet. 102, 190-199
  5. Dellaporta, S. L., J. Wood and J. B. Hicks (1983) A plant DNA minipreparation Version Ⅱ. Plant Mol. BioI. Rep. 1, 19-21 https://doi.org/10.1007/BF02712670
  6. Depeiges, A., C. Goubely, A. Lenoir, S. Cocherel, G. Picard, M. Raynal, F. Grellet and M. Delseny (1995) Identification of the most represented motifs in Arabidopsis thaliana microsatellite loci. Theor. Appl. Genet. 91, 160-168
  7. Divaret, I., E. Margale and G. Thomas (1999) RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L. collection. Theor. Appl. Genet. 98, 1029-1035 https://doi.org/10.1007/s001220051164
  8. Fang, D. Q., M. L. Roose, R. R. Krueger and C. T. Federici (1997) Fingerprinting trifoliate orange germplasm accessions with isozymes, RFLPs and inter - simple sequence repeat markers. Theor. Appl. Genet. 95, 211-219 https://doi.org/10.1007/s001220050550
  9. Fornari, B., D. Taurchini and F. Villani (1999) Genetic structure and diversity of two Turkish Castanea sativa Mill. Populations investigated with isozyme and RAPD polymorphisms. J. Genet. Breed. 53, 315-325
  10. Gauer, L. and S. Cavalli-Molina (2000) Genetic variations in natural populations of mate (Illex paraguariensis A. St. Hil. Aquifoliaceae) using RAPD markers Heridity 84, 647-656 https://doi.org/10.1046/j.1365-2540.2000.00687.x
  11. Ge, X. J. and M. Sun (1999) Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and inter-simple sequence repeats (ISSR) analysis. Mol. Ecol. 8, 2061-2069 https://doi.org/10.1046/j.1365-294x.1999.00821.x
  12. Hamrick, J. L. and M. J. W. Godt (1989) Allozyme diversity in plant species; in Plant population genetics, breeding and genetic resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds), pp. 43-63, Sinauer, Sunderland
  13. Hirano, H. (1982) Varietal differences of leaf protein profiles in mulberry. Phytochemistry 21, 1513-1518 https://doi.org/10.1016/S0031-9422(82)85008-5
  14. Hotta, T. (1954) Fundamentals of Morus plants classification (in Japanese). Kinugasa Sanpo 390, 13-21
  15. Iruela, M., J. Rubio, J. I. Cubero, J. Gil and T. Millan (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor. Appl. Genet. 104, 643-651 https://doi.org/10.1007/s001220100751
  16. Jaccard, P. (1908) Nouvelles researches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44, 223-270
  17. Katsumata, F. (1972) Relationship between the length of styles and the shape of idioblasts in mulberry leaves, with special reference to the classification of mulberry trees. J. Sericult. Sci. Jpn 41, 387-395
  18. Katsumata, F. (1979) Chromosomes of Morus nigra L. from Java and hybridisation affinity between this species and some mulberry species in Japan. J. Sericult. Sci. Jpn 48, 418-422
  19. Khasa, P. D. and B. P. Dancik (1996) Rapid identification of white Engelman spruce species by RAPD markers. Theor. Appl. Genet. 92, 46-52 https://doi.org/10.1007/BF00222950
  20. Kumar, J. S., A. Sarkar, B. N. Susheelamma and M. Venkateswarlu (2002) Identification of mulberry genotypes for cultivation as tree. Indian J. Sericult. 41, 78-79
  21. Lambouy, W. F., J. Yu, P. L. Forsline and N. F. Weeden (1996) Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J. Am. Soc. Hort. Sci. 121, 982-987
  22. Liedloff, A. (1999) Mantel version 2.0, Mantel nonparametric test calculator. Shool of Natural Resources Sciences, Queensland University of Technology, Brisbane, Australia (web site: www.qut.edu.au/NRS)
  23. Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209-220
  24. Mattioni, C., M. Casasoli, M. Gonzalez, R. Ipinza and F. Villani (2002) Comparison of ISSR and RAPD markers to characterize three chilean Nothofagus species. Theor. Appl. Genet. 104, 1064-1070 https://doi.org/10.1007/s00122-001-0824-x
  25. Moeller, D. A. and B. A. Schaal (1999) Genetic relationships among native American maize accessions of Great Plains assessed by RAPDs. Theor. Appl. Genet. 99, 1061-1067 https://doi.org/10.1007/s001220051415
  26. Moreno, S., J. P. Martin and J. M. Ortiz (1998) Inter-simple repeat PCR for characterization of closely related grapevine germplasm. Euphytica 101, 117-125 https://doi.org/10.1023/A:1018379805873
  27. Morgante, M. and A. M. Olivieri (1993) PCR-amplified microsatellite markers in plant genetics. Plant J. 3, 175-182 https://doi.org/10.1111/j.1365-313X.1993.tb00020.x
  28. Nagaoka, T. and Y. Ogihara (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94, 597-602 https://doi.org/10.1007/s001220050456
  29. Nagaraju, J., M. Kathirvel, R. Ramesh Kumar, E. A. Siddiq and S. E. Hasnian (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence based ISSR-PCR and SSR markers. Proc. Natl. Acad. Sci. USA. 99, 5836-5841 https://doi.org/10.1073/pnas.042099099
  30. Naik, V. G., A. Sarkar and N. Sathyanarayana (2002) DNA fingerprinting of Mysore Local and V-1 mulberry (Morus spp.) cultivars with RAPD markers. Indian J. Genet. 62, 193-196
  31. Nebauer, S. G., L. Del Castillo Agudo and J. Segura (1999) RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.). Theor. Appl. Genet. 98, 985-994 https://doi.org/10.1007/s001220051159
  32. Oraguzie, N. C., S. E. Gardiner, C. M. Basset, M. Stefanati, R. D. Ball, V. G. M. Bus and A. G. White (2001) Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J. Am. Soc. Hort. Sci. 126, 318-328
  33. Owuor, E. D., T. Fahima, A. Beiles and A. Korol (1997) Population genetic response of microsite ecological stress in wild barley Hordeum spontaneum. Mol. Ecol. 6, 1177-1187 https://doi.org/10.1046/j.1365-294X.1997.00296.x
  34. Prevost, A. and M. J. Wilkinson (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98, 107-112 https://doi.org/10.1007/s001220051046
  35. Qian, W., S. Ge and D. Y. Hong (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 440-449 https://doi.org/10.1007/s001220051665
  36. Raina, S. N., V. Rani, T. Kojima, Y. Ogihara, K. P. Singh and R. M. Devarumath (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44, 763-772 https://doi.org/10.1139/gen-44-5-763
  37. Rajan, M. V., H. K. Chaturvedi and A. Sarkar (1997) Multivariate analysis as an aid to genotype selection for breeding in mulberry. Indian J. Sericult. 36, 111-115
  38. Rohlf, F. J. (1998) NTSYS-PC: Numerical taxonomy and multi variate analysis system version 2.0. Exeter software, Setauket, NY
  39. Rus-Kortekaas, W., M. J. M. Smulders, P. Arens and B. Vosman (1994) Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome 37, 375-381 https://doi.org/10.1139/g94-053
  40. Salimath, S. S., A. C. de Oliveira, I. D. Godwin and J. L. Bennetzen (1995) Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38, 757-763 https://doi.org/10.1139/g95-096
  41. Sanjappa, M. (1989) Geographical distribution and exploration of the genus Morus L. (Moraceae); in Genetic resources of mulberry and utilization. Sengupta, K. and S. B. Dandin (eds), pp. 4-7, Jwalamukhi Job Press, Bangalore, India
  42. Sharma, A., R. Sharma and H. Machii (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor. Appl. Genet. 101, 1049-1055 https://doi.org/10.1007/s001220051579
  43. Sharma, S. K., I. K. Dowsons and R. Waugh (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor. Appl. Genet. 91, 647-654
  44. Suryanarana, N., D. M. Rama Rao and M. P. Reddy (2002) Genetic divergence in mulberry (Morus spp.). Indian J. Seric. 41, 116-119
  45. Tanksley S. D. and S. R. McCouch (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063-1066 https://doi.org/10.1126/science.277.5329.1063
  46. Thangavelu, K., P. Mukherjee, A. Tikader, S. Ravindran, A. K. Goel, A. Ananda Rao, V. Girish Naik and S. Sekar (1997) Catalogue on mulberry (Morus spp.) germplasm. 1st edn, Central Sericultural Germplasm Resources Centre, Hosur, India, Anand Process Press, Bangalore, 1
  47. Thangavelu, K., A. Tikader, S. R. Ramesh, A. Ananda Rao, V. Girish Naik, S. Sekar and A. L. Deole (2000) Catalogue on mulberry (Morus spp.) germplasm. 1st edn, Central Sericultural Germplasm Resources Centre, Hosur, India, Vishruti Prints, Bangalore, 2
  48. Tikader, A. and B. N. Roy (2001) Multivariate analysis in some mulberry (Morus spp.) germplasm accessions. Indian J. Sericult. 40, 168-170
  49. Vavilov, N. J. (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13, No. 1/6
  50. Venkateswarlu, M., B. N. Susheelamma, N. Suryanarayana and K. Sengupta (1989) Peroxidase isozyme studies in four mulberry varieties introduced from Indonesia. Indian J. Sericult. 28, 271-273
  51. Venkateswarlu, M., B. N. Susheelamma, A. Sarkar and R. K. Datta (1994) Isozyme studies in mulberry germplasm introduced from Rajasthan. Indian J. Sericult. 33, 98-99
  52. Venkateswarlu, M., R. K. Aggarwal and A. Sarkar (2002) An easy and simple method of extraction and purification of genomic DNA in mulberry. J. Cytol. Genet. 3, 163-174
  53. Vijayan K. and S. N. Chatterjee (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131, 53-63 https://doi.org/10.1023/A:1023098908110
  54. Wang, G., R. Mahalingam and H. T. Knap (1998) (C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycin max (L.) Merr. Theor. Appl. Genet. 96, 1086-1096 https://doi.org/10.1007/s001220050843
  55. Wang, Z., J. L. Weber, G. Zhong and S. D. Tanksley (1994) Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88, 1-6
  56. Welsh, J. and M. McClelland (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218 https://doi.org/10.1093/nar/18.24.7213
  57. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535 https://doi.org/10.1093/nar/18.22.6531
  58. Yeh, F. C., D. K. X. Chong and R. C. Yang (1995) RAPD variation within and among natural populations of Trembling Aspen (Populus tremuloides Michx) from Alberta. J. Hered. 86, 454-460 https://doi.org/10.1093/oxfordjournals.jhered.a111620
  59. Zietkiewicz, E., A. Rafalski and D. Labuda (1994) Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20, 176-183 https://doi.org/10.1006/geno.1994.1151