Visualization of Local Climates Based on Geospatial Climatology

공간기후모형을 이용한 농업기상정보 생산

  • 윤진일 (경희대학교 생명과학부/생명자원과학연구원)
  • Published : 2004.12.01

Abstract

The spatial resolution of local weather and climate information for agronomic practices exceeds the current weather service scale. To supplement the insufficient spatial resolution of official forecasts and observations, gridded climate data are frequently generated. Most ecological models can be run using gridded climate data to produce ecosystem responses at landscape scales. In this lecture, state of the art techniques derived from geospatial climatology, which can generate gridded climate data by spatially interpolating point observations at synoptic weather stations, will be introduced. Removal of the urban effects embedded in the interpolated surfaces of daily minimum temperature, incorporation of local geographic potential for cold air accumulation into the minimum temperature interpolation scheme, and solar irradiance correction for daytime hourly temperature estimation are presented. Some experiences obtained from their application to real landscapes will be described.

Keywords

References

  1. 원예연구소, 2003: 복숭아 동해위험지대 구분. 원예시험연구 사업연보(2002) pp.31
  2. Choi, J., U. Chung, and J. I. Yun 2003: Urban-effect correction to improve accuracy of spatially interpolated temperature estimates in Korea. Journal of Applied Meteorology 42: 1711-1719
  3. Chung, U., J. Choi, J. I. Yun, 2004: Urbanization effect on the observed change in mean monthly temperatures between 1951-1980 and 1971-2000 in Korea. Climatic Change 66, 127-136
  4. Chung, U., B. S. Hwang, H. H. Seo, and J. I. Yun, 2003b: Relationship between Exposure Index and Overheating Index in complex terrain. Korean Journal of Agricultural and Forest Meteorology 5(3), 200-207
  5. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, and J. I. Yun, 2002: Minimum temperature mapping in complex terrain considering cold air drainage. Korean Journal of Agricultural and Forest Meteorology 4(3), 133-140
  6. Chung, U., H. H. Seo, and J. I. Yun, 2004: Site-specific frost warning based on topoclimatic estimation of daily minimum temperature. Korean Journal of Agricultural and Forest Meteorology 6(3), 164-169
  7. Chung, U, H. H. Seo, J. I. Yun, and K. H. Lee, 2003a: An optimum scale for topoclimatic interpolation of daily minimum temperature in complex terrain. Korean Journal of Agricultural and Forest Meteorology 5(4),261-265
  8. Chung, U., and J. I. Yun, 2004: Solar irradiance - corrected spatial interpolation of hourly air temperature in complex terrain. Agricultural and Forest Meteorology 126, 129-139
  9. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical - topographical model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33, 140-158
  10. Holdaway, M. R., 1996: Spatial modeling and interpolation of monthly temperature using kriging. Climate Research 6, 215-225
  11. Kim, S. K., J. S. Park, Y. S. Lee, H. C. Seo, K. S. Kim, and J. I. Yun, 2004: Development and use of digital climate models in northern Gyunggi Province II. Site-specific performance evaluation of soybean cultivars by DCM-based growth simulation. Korean Journal of Agricultural and Forest Meteorology 6(1), 61-69
  12. Kim, Y. H., H. D. Kim, S. W. Han, J. Y. Choi, J. M. Koo, U. Chung, J. Y. Kim, and J. I. Yun, 2002: Using spatial data and crop growth modeling to predict performance of South Korean rice cultivars grown in western coastal plains in North Korea. Korean Journal of Agricultural and Forest Meteorology 4(4), 224-236
  13. Kwon, E. W., J. E. Jung, H. H. Seo, and J. I. Yun, 2004: Using digital climate modeling to explore potential sites for quality apple production. Korean Journal of Agricultural and Forest Meteorology 6(3), 170-176
  14. Phillips, D. L., J. Dolph, and D. Marks, 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology 58, 119-141
  15. Regniere, J., 1996: Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology 25(5),896-881
  16. Regniere, J., B. Cooke, and V. Bergeron, 1996: BioSIM: A Computer-Based Decision Support Tool for Seasonal Planning of Pest Management Activities. User’s Manual. Canadian Forest Service Info. Rep. LAU-X-116. 50p
  17. Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48(4), 379-383
  18. Shin, M. Y., J. I. Yun, and A. S. Suh, 1999: Estimation of daily maximum and minimum temperature distribution over the Korean Peninsula by using spatial statistical technique. Journal of the Korean Society of Remote Sensing 15(1), 9-20
  19. Yoo, I. S., D. H. Choi, and S. H. Yun, 1996: Agroclimatic zones for rice cultivation in North Korea. Korean Journal of International Agriculture 8(3), 206-215
  20. Yun, J. I., 2000: Estimation of climatological precipitation of North Korea by using a spatial interpolation scheme. Korean Journal of Agricultural and Forest Meteorology 2(1), 16-23
  21. Yun, J. I., 2003: Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agricultural Systems 77, 23-38
  22. Yun, J. I., and K. H. Lee, 2000: Agroclimatology of North Korea for paddy rice cultivation : Preliminary results from a simulation experiment. Korean Journal of Agricultural and Forest Meteorology 2(2), 47-61
  23. Yun, J. I., J. C. Nam, S. Y. Hong, J. Kim, K. S. Kim, U. Chung, N. Y. Chae, and T. J. Choi, 2004: Using spatial data and land surface modeling to monitor evapotranspiration across geographical areas in South Korea. Korean Journal of Agricultural and Forest Meteorology 6(3), 149-163