DOI QR코드

DOI QR Code

Mechanical Properties of Ultrafine Grained 5052 Al Alloy Produced by Cryogenic Rolling Process

극저온 압연으로 제조된 5052 Al 합금의 기계적 성질

  • 남원종 (국민대학교 신소재공학부)
  • Published : 2004.12.01

Abstract

The effect of annealing temperature on microstructures and mechanical properties of the 5052 Al sheets rolled 88% reduction at cryogenic temperature was investigated for the annealing temperature of 150 ~ $300^{\circ}C$, in comparison with those rolled at room temperature. The presence of equiaxed grains, whose size is about 200nm in a diameter, was observed in the alloy deformed 88% and annealed $200^{\circ}C$ for an hour. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed the higher strengths and equivalent elongation after annealing at the annealing temperature below $200^{\circ}C$. However, for annealing above $250^{\circ}C$ materials deformed at cryogenic temperature showed the lower strength than those deformed at room temperature. This behavior might be attributed to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

Keywords

References

  1. M. Furukawa, Z. Horita and T. G. Langdon, 2003, 'Factors Influencing Microstructural Development in Equal-Channel Angular Pressing', Metals and Materials Int. Vol. 9, p. 141 https://doi.org/10.1007/BF03027270
  2. S. Y. Chang, J. G. Lee, K. T. Park and D. H. Shin., 2001, 'Microstructures and mechanical propert-yes of equal channel angular pressed 5083 Al alloy, Mater. Trans. JIM, Vol. 42, p. 1074 https://doi.org/10.2320/matertrans.42.1074
  3. V. Patlan, K. Higashi, K. Kitagawa, A. Vinogradov and M. Kawazoe., 2001, 'Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing', Mater. Sci. and Eng., Vol. 319-321, p. 587 https://doi.org/10.1016/S0921-5093(01)01069-3
  4. R. Valiev, 2001, 'Developing SPD Methods Processing Bulk Nanostructured Materials with Enhanced Properties', Metals and Materials Int., vol. 7, p. 413 https://doi.org/10.1007/BF03027081
  5. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino., 2002, 'Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing', Scripta Mater. Vol. 47, p. 893 https://doi.org/10.1016/S1359-6462(02)00282-8
  6. Y. Saito, H. Utsnomiya, N. Tsuji and T. Sakai., 1999, 'Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process', Acta Mater. Vol. 47, p. 579 https://doi.org/10.1016/S1359-6454(98)00365-6
  7. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, J. A. Szpunar and T. G. Landon., 2003, 'Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion', Acta Mater. Vol. 51, p. 753 https://doi.org/10.1016/S1359-6454(02)00466-4
  8. Z. Y. Liu, L. X. Hu and E. D. Wang, 1998, 'A further study on effect of large strain on structure and properties of a Cu-Zn alloy', Mater. Sci. Eng., vol. A255, p. 16
  9. Y. Wang, E. Ma and M. Cheng., 2002, 'Enhanced tensile ductility and toughness in nanostructured Cu', Applied Physics Letters, Vol. 80, p. 2395 https://doi.org/10.1063/1.1465528
  10. Y. Wang, M. Chen, F. Zhou and E. Ma., 2002, 'High tensile ductility in a nanostructured metal', Nature, Vol. 419, p. 912 https://doi.org/10.1038/nature01133
  11. J. S. Hayes, R. Keyte and P. B. Prangnell, 2000, 'Structural and mechanical properties in AA 5083 processed by ECAE', Mater. Sci. & Tech., vol. 16, p. 1259 https://doi.org/10.1179/026708300101507479