실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control

  • 발행 : 2004.06.30

초록

국내 실시간 신호제어시스템은 주요교차로의 검지체계에서 산출되는 포화도 정보 및 실시간 신호운영자료를 토대로 차기 주기길이를 설계하고 있다. 이러한 국내 실시간 신호제어시스템의 주기길이 설계모형에 의해 설계되는 차기주기길이는 교통량이 증가하면 주기길이도 증가한다는 주기길이 결정 기본원리를 따르고 있으나 해당 주기길이 설계모형으로 결정되는 주기길이가 과연 지체최소화 주기인지 검토가 요구된다. 또한 국내 실시간 신호제어시스템의 주기길이 설계모형에는 운영자 결정 변수가 있어 차기 주기길이 설계가 비효율적일 수 있으므로 운영자 결정 변수를 제외한 주기길이 설계모형 개발이 필요하다. 이에 본 연구에서는 (1)국내 실시간 신호제어시스템의 주기길이 설계모형을 검토하고, (2)운영자 결정변수를 제외한 주기길이 설계모형을 개발한다. 국내 실시간신호제어시스템의 주기길이 설계모형을 검토한 결과 (1)교차로의 운영상태가 비포화일 경우 지체최소화 주기보다 큰 주기길이를 설계하는 것으로 검토되었고, (2)교차로의 현재 신호주기가 90초 이상일 경우 목적 운영포화도(Target operational volume-to-capacity ratio)가 0.90을 유지하는 반면 신호주기가 90초 미만일 경우 목적운영포화도가 0.90보다 작아지는 것으로 검토되었다. 본 연구는 이러한 점을 고려, 신경망을 이용하여 운영자 결정변수를 제외한 국내 실시간 신호제어시스템을 위한 지체 최소화 주기길이 설계 모형을 개발하였다. 모형 검증결과 본 연구에서 개발된 신경망 모형은 국내 실시간 신호 제어시스템과는 달리 지체최소화 주기길이와 유사한 패턴으로 주기길이를 설계한다는 결과를 도출하였다.택배서비스시장도 성장한 것으로 나타났다. 특히 정부주도에 의한 정보화추진이 전자상거래를 촉진시켜 택배서비스시장에 영향을 미친 것으로 분석되었다.수 있는 Load Balancing System을 제안한다.할 때 가장 효과적인 라우팅 프로토콜이라고 할 수 있다.iRNA 상의 의존관계를 분석할 수 있었다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수

The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.

키워드

참고문헌

  1. Webster, F.V. (1958), 'Traffic Signal Setting', Road Research Technical Paper 39, London. U.K.
  2. Courage. KG. and Wallace, C. (1991),'TRANSYT-7F User Guide', Transportation Research Center, University of Florida, FL, Gainesville, U.S.A.
  3. Courage, K.G. and Wallace, C. (1991), 'The Most Reference Manual', Transportation Research Center, University of Florida, FL, Gainesville, U.S.A.
  4. Transportation Research Board, (2000), 'Highway Capacity Manual', Special Report 209, 3rd edition',National Research Council, Washington, DC, U.S.A.
  5. 서울시정개발연구원(2002),'신신호 시스템 검증 및 평가를 위한 학술용역(1차)'
  6. 도로교통안전관리공단,서울시정개발연구원(2001), '신신호시스템 기능개선 및 종합발전계획 수립'
  7. 서울시정개발연구원(2003), '신신호시스템 검증.평가'
  8. 도철웅(1999). '교통공학원론(상)' 청문각
  9. 이상원(1993), '학습하는 기계 신경망', Ohm사
  10. Federal Highway Administration (2001), 'TSIS User's Guide', Virginia, U.S.A.
  11. Showers, R. H. and K. G. Courage (1998), 'CORSIM Treatment of Gap Acceptance and Delay', Presented at 77th Annual Meeting of the Transportation Research Board,Washington,D.C.
  12. Chundury, s. am B. Wolshon (2003), 'Evaluation of the CORSIM Car-Following Model Using GPS Field Data', In Transportation Research Record 1710, TRB, National Research Council, Washington, D.C., pp.114-121
  13. Byungkyu Park (2001), 'A Framework for Traffic Simulation Model Validation Procedure Using CORSIM as a Test-Bed', 2001 International Symposium on Advanced Highway Technology, pp.61-67
  14. 건설교통부(2001), '도로용량편람', 대한교통학회