큰양송이 (Portobella) 재배법 개발에 관한 연구 ॥

-발이 및 생육온도 구명-

지정현^{*} · 이 대흥^{*} · 김희동^{*} · 김영호^{*} · 김영호^{*}

Studies on the Cultivation Method of Portobella (Agaricus brunescens) II

-Investigation of Pin-heading induction and Growing Temperature for Agaricus brunescens-

Jeong-Hyun Chi^{1)*}, Jae-Hong Lee¹⁾, Hee-Dong Kim¹⁾ and Young-Ho Kim²⁾

¹⁾Kwangju Mushrooms Experiment Station, Gyonggi Province ARES, 464–870, Korea ²⁾Gyonggi Province Agricultural Research and Extention Services, 445–970, Korea

ABSTRACT: This study were conducted to investigate pin-heading induction and growing temperature of *Agaricus brunescens*. The temperature for fruit body formation was better at 15 $^{\circ}$ C than at 18 and 21 $^{\circ}$ C. As the temperature go up to 21 $^{\circ}$ C, the fruit body number was decreased but the fruit body size and weight was increased. Optimal temperature for both pin-heading and growth of *Agaricus brunescens* was 18 $^{\circ}$ C.

KEYWORDS: Agaricus brunnesens, temperature, fruitbody size, vield

양송이의 생육에 영향을 미치는 요인은 종균, 배지, 복토 등여러 가지 요인이 관여하나 이외에도 온도, 수분, CO₂등이 있다. 재배실내의 환경이 적합한 범위에 있을 때 양송이 균사는 영양생장을 지속하는 경향이 있으며, 생식생장 단계로의 전환 및 자실체의 형성에는 환경의 변화를 필요로 한다. 양송이버섯의 균사생장 적온은 23~25℃인데 반하여 버섯이 발생할 때는 재배실 온도를 15℃까지 하강시키고, 균상면적 3.3㎡당 1시간에 10~20㎡의 신선한 공기를 공급하여 주어야 한다(성 등,1998). 또한 품질이 양호한 버섯을 수확하려면 버섯의 품질이 저하되지 않는 범위내에서 생장을 촉진시킬 필요가 있으므로 재배사의 온도를 16~17℃로 약간 높게 유지하여 주는 것이 좋으나 품종에 따라 온도관리가 달라져야 한다. 따라서 본 시험은 큰양송이(포토벨라)의 발이 및 생육에 적정한 온도를 구명코자 수행한 결과이다.

재료 및 방법

공시균주

본 시험에 사용된 균주는 광주버섯시험장에서 보관중인 KME59007을 CDA(퇴비추출) 배지상에 계대배양하여 공시균주로 사용하였다.

종균준비

종균제조를 위한 밀곡립배지는 물에 세척하여 이물질을

*Corresponding author : <E-mail: chijh@kg21.net>

제거하고 수증기로 쪄서 수분함량을 45~50%로 조절하고 선풍기를 이용하여 유리수분을 제거한 후 곡립의 결착을 방지하기 위해 석고를 배지무게의 1%로 첨가하였고, 산도조절을 위해 탄산칼슘을 석고량의 1/2을 첨가하였다. 입병량은 링겔병에 병당 450g씩 담고 면전하여 121℃에서 60분간 고압살균 후 냉각시켰다. 접종용 원균은 CDA 배지에서 25℃로 14일간 배양하여 준비하였고 이 원균을 무균실에서 절개하여 곡립배지에 접종하였고 23℃에서 21일간 배양하면서 고른 균사생장을 위해 3회 shaking을 실시하였다.

볏짂발효배지제조

병짚은 360×180×180cm의 퇴적틀에 3일간 가퇴적을 실시하여 병짚에 수분을 고르게 흡수시킨 후 본퇴적시 계분을 병짚무게의 10%, 미강은 5%를 시용하였으며, 요소는 본퇴적 및 1, 2차 뒤집기시 3회 분시하여 퇴적시 질소 농도는 1.5%가 되도록 조절하였다. 15일간 야외발효 후 플라스틱 상자(0.174㎡)에 배지의 건조방지를 위하여 비닐(0.03mm)을 깔고 병짚퇴비를 상자당 10kg정도씩 넣어 균상에 입상한 후 60℃에서 6시간 정열을 실시하고 55~58℃에서 2일, 50~53℃에서 2일, 45~48℃에서 2일간후발효를 실시하였으며 후발효기간 중 재배사 환기를 매일 3~4회씩 시켜주었다. 접종은 배지온도를 25℃이하로하온시킨 후 평당 6 lbs 수준으로 충별접종하였다. 접종된 배지는 신문지로 피복하여 배지온도는 22~23℃, 상대습

도를 90%로 유지하면서 15일간 배양 후 2~3cm두께로 복토하였는데, 복토용 흙은 식양토에 소석회를 사용하여 pH를 8.2로 조절하고 80℃에서 1시간 증기소독 후 사용하였다. 복토 6일 후에는 후토 및 복토층 관수를 실시하였고 15, 18, 21℃로 조절된 재배사에 각각 30상자씩 입상하여 온도별로 재배하였다. 입상후 복토층이 마르지 않도록 재배사의 습도를 85~90%로 조절하면서 관수 관리를 실시하였다.

주요조사내용 및 조사방법

자실체 수량은 버섯의 복토층이하 부분을 절제한 후 상자 당(0.174㎡) 생체중량을 측정하여 평당수량으로 환산하였고, 자실체의 형태적특성은 생산된 자실체 중 평균치에 가까운 개체를 선발하여 갓크기, 갓두께, 대길이, 대굵기, 개체중을 조사하였다. 자실체 상품(商品) 비율은 상품(上品)을 갓크기 6cm이상, 중품(中品)을 갓크기 4~6cm, 하품(下品)을 갓크기 4cm 이하로 구분하여 조사하였다. 경제성분석은 100평 재배사에 년간 2회 재배하여 2000년 경매시장 양송이 중품 평균가격을 적용 농축산물 소득자료집(농진청, 2001)에 의거 조사분석 하였다.

결과 및 고찰

적정발이온도

온도별 발이정도 및 생육특성 조사는 처리온도를 발이부터 생육까지 동일하게 유지하면서 조사한 결과(표1)로서 초발이소요일수는 21℃에서 15℃에 비해 3일 가량 늦어지는 경향이었으나, 발이주기는 21℃와 18℃가 15℃보다 3~4일 빠르게 나타났다. 이는 양송이류의 영양생장기와 생식생장기의 요구 온도차이에 따른 것으로 판단되며, 자실체 발생개체수도 15℃와18℃에서 2,070~2,364개/3.3

㎡로 21 ℃의 640개/3.3㎡에 비해 매우 큰 차이를 나타내어 큰양송이의 발이온도는 15~18℃가 적당한 것으로 판단되었다. 수량도 발이 정도가 양호한 편이었던 18℃에서 39.2kg/3.3㎡로 높았고 21 ℃에서는 26.6kg/3.3㎡으로 낮았다. 버섯은 발생개체수가 많을수록 버섯이 잘고 작아지는 현상을 나타내므로 개체를 크게 키우기 위해서는 솎음 작업이 필요한 것으로 판단된다.

적정 생육온도

생육온도에 따른 자실체의 형태는 15℃에서 발이시킨 후 각각의 생육온도별로 관리하면서 조사한 결과로서 표2에 서와 같이 생육온도가 15℃보다 높을 경우 자실체의 크기와 개체중이 증가하여 21℃에서는 15℃에 비해 개체중이두배에 가까운 자실체를 얻을 수 있었다. 갓크기는 15℃의 45.3㎜ 대비 21℃에서는 67.1㎜로 큰 차이를 나타내었고, 개체중 역시 15℃의 23g 대비 21℃에서는 47.5g으로 큰차이를 나타내었다. 차 등(1981)은 양송이버섯은 균사생장의 최적온도 범위인 23~25℃에 접근할수록 건실하여 20~25℃의 자실체가 개체중량이 무겁고 15℃ 및 30℃에서는 자실체가 작아진다고 보고 된 바본시험 결과도 같은 경향이었다.

생육온도별 자실체의 상품화(商品化)비율은 버섯갓 크기를 중심으로 상품(上)은 6cm이상, 중품(中)은 $4\sim6$ cm, 하품(下)은 4cm 이하로 구분하여 조사하였는데 15 에서 생산된 자실체의 상품비율은 전체 중량의 25% 였고, 18 는 49%, 21 는 75%로 15 에 비하여 3배 가량 상품(上品) 비율이 증가되었다(표3).

경제성 분석

생육온도를 달리하여 재배한 경우 년간 2회 재배조건으로 생산된 큰양송이(가칭)의 가격을 2000년도 양송이 중

Table 1. Characteristics of pinhead formation and fruitbody growth in different temperature

Temperature $(^{\circ}\mathbb{C})$	Pinhead formation days(day)	Pinhead formation cycle(days)	The number of fruitbody (EA/3.3 m²)	Yield (kg/3.3 m²)
15	23	11.6	2,364	36.5
18	24	8.7	2,070	39.2
21	26	7.7	640	26.6

Table 2. Fruitbody characteristics of different growing temperature

Growing temp. $(^{\circ}\mathbb{C})$	Cap width (mm)	Cap thickness (mm)	Stem length (mm)	Stem thickness (mm)	Indivisual weight (g)
15	45.3	22.0	18.5	21.1	23.0
18	48.6	23.5	21.8	18.6	27.8
21	67.1	28.7	19.3	23.3	47.5

Table 3. Marketable fruitbody ratio in different growth temperature

Growth	Large size			Medium size			Small size		
	Indivisual weight (g)	Fruitbody numbers ratio(%)	Fruitbody weight ratio(%)	Indivisual weight (g)	Fruitbody numbers ratio(%)	Fruitbody weight ratio(%)	Indivisual weight (g)	Fruitbody numbers ratio(%)	Fruitbody weight ratio(%)
15	46.1	11.2	24.5	26.2	57.5	60.9	11.6	31.3	14.6
18	4.3	28.6	48.9	24.3	42.9	38.7	11.7	28.5	12.4
21	4.5	51.0	75.1	24.1	42.0	23.3	10.0	7.0	1.6

Table 4. Income analysis of mushroom culture in different growth temperature

Growth temp. $(^{\circ}\mathbb{C})$	Yield (kg/100pyoung)	Large size	Income ana	Income		
		mushroom ratio (%) ¹⁾	Gross income	Expense	Income ²⁾	index
15	7,300	24.5	26,539	12,523	14,016	88
18	7,840	48.9	28,502	12,489	16,013	100
21	5,320	75.1	19,341	12,470	6,871	49

¹⁾ Large size mushroom ratio: over 6cm cap size fruitbody's weight gross income

품의 도매시장 경매가격인 kg당 3,636원을 적용하여 경제성을 분석한 결과(표4) 18 에서 소득이 가장 높았다. 이상의 시험결과로 큰양송이(포토벨라) 재배시 발이 및 생육온도는 버섯 발생개체수, 수량, 형태적 특성, 품질 및 경제성 등을 고려해 볼 때 18℃가 적절한 것으로 사료된다.

적 요

큰양송이(포토벨라)의 발이 및 생육에 적정한 온도를 구명코자 수행한 결과는 다음과 같다.

- 1. 초발이 소요일수는 15℃에서 23일로 가장 짧았으며 그다음은 18℃, 21℃ 순이었다.
- 2. 자실체 발생 개체수는 15℃에서 2,364개/3.3㎡로 가장 많았으나, 수량은 18℃처리구에서 39.2 kg/3.3㎡로 가장 높았다.
- 3. 온도별 자실체특성은 21 ℃에서 상품(上品)비율이 75.1%로 15℃, 24.5%와 18℃, 48.9%보다 양호하였다.

4. 수량은 15℃와 18℃에 있어서 평당 36.5~39.2kg으로 비슷하였으나 18℃에서 상품비율이 48.9%로 높아 100평당 소득은 16,013천원으로 높았다.

참고문헌

- 김동수. 1975. 양송이의 균사생장 및 자실체 수량에 미치는 복 토재료의 이화학적 성질에 관한 연구. 한국균학회지. 3(1): 1-19.
- 김홍규, 이희덕, 김용균, 한규홍, 문창식, 김홍기. 1998. 병재 배 폐톱밥을 이용한 양송이 복토재료개발에 관한 연구. 한 국균학회지. 26(1): 51-55.
- 농촌진흥청. 2000농축산물 소득자료집. 2001. pp. 140.
- 성재모, 유영복, 차동열. 1998. 버섯학. pp.333-385.
- 차동열, 박종성, 신관철. 1981. 양송이 균사 생장과 자실체 수 량에 미치는 몇가지 환경요인의 영향. 한국균학회지. 9: 7-12.
- 차동열, 유창현, 김광포. 1989. 최신버섯재배기술. 농진회. pp. 188-267.

²⁾ Income analysis was supposed to culture twice a year