56 H=EAM2|Es|X| HM11H M6z (2004, 1)

Middleware for Context-Aware Ubiquitous

Computing

Jm
e

EE

=

1. Introduction

4. Summary

1. Introduction

1.1 Ubiquitous Gomputing Vision

The term “Ubiquitous Computing” was
originally introduced by Mark Weiser[1] in the
year 1991. In his fundamental article “The
Computer for the 21st Century”[2].he elaborated
about “the computer that disappears”. For Weiser
the way into the 2lst century was obvious:
Computer and Network technologies are getting
to be smaller, cheaper, and more powerful,
Therefore, more and more everyday artifacts are
going to be equipped with a reasonable amount of
computing power and, maybe even more
important, are networked together into a virtually
unique network of communicating “things that
think”. In the pure sense of the word, computing

gets “ubiquitous”, anywhere, any time. Computers

* a Master student in the Computer Engineering Department at
Kyung Hee University
** Professor in the Department of Computer Engineering, Kyung
Hee University

Hung Q. Ngo® Sungyoung Lee™

2. Middleware for Context—Aware Ubiquitous Computing Environments
3. Research Issues in Context—Aware Middleware

in every thing that is calmly doing what we
intend it to do, in a way that is non-obtrusive and
user-friendly, in a sense that we do not have to
focus our attention on the frivia of running an
electronic system.

Research on Ubiquitous Computing (Ubicomp)
is related to very many other disciplines from
Robotics and Embedded Systems, Networking
and Distributed Systems, to Artificial Intelligence
and Technology&Society. Thus Ubiquitous
computing is a very difficult integration of human
factors, computer science, engineering, and social

sciences.

1.2 Context-aware Computing

One goal of Context-aware Computing is to
acquire and utilize information about the context
of a device o provide services that are appropriate
to the particular people, place, time, events, etc,
For example, a cell phone will always vibrate and
never beep in a concert, if the system can know

the location of thecell phone and the concert

schedule, Often, the term “Context-Aware
Computing” is used in a sense synonymously fo
Ubiquitous Computing. This is because almost
every Ubicomp application makes use of some
kind of Context. Ubicomp is mainly about
building systems which are useful to users, which
“..weave themselves into the fabric of everyday
life until they are indistinguishable from it"[2].
Ubicomp systems Context is essential: “How can
a system be helpful for a user?” Users tend to
move around often, doing new things, visiting
new places, changing their mind suddenly, and
changing their mood, too. Therefore, a helpful
system seems to need some notion of Context.

In the Human point of view, we have a quite
intuitive understanding of Context. Here, Context
is often referred to as “implicit situational
understanding.” In social interactions Confext is of
great importance: A gesture, a laugh, or the
intonation of sentences is building up the implicit
"picture” of what is meant or what my
communication partner is thinking. The same
words can have adifferent meaning in different
contexts.

In Computer Science Context is quite familiar.
Be it within the discipline of Artificial Intelligence
("Thinking machines”), in Robotics ("Adaptive
Systems™), in User Interface Design (like
adaptive Uls or office assistants like the Microsoft
Office assistant called “Clippy ™). or basically any
other discipline (to some extent). Especially,
every discipline dealing with human users tries to
take into account human behavior one way or the
other, with the generated outpuf loops back as

part of the vector of input values.

Middleware for Context—Aware Ubiquitous Computing 57

From the variety of definitions commonly used
by Ubicomp researchers we can imagine how
difficult it is to find a common ground. Context
definitions are far away from mathematical
precision and a particular definition often strongly
depends on an authors’ subjectiveness:

© Schilit and Theimer [3]: “Context is location,
identities of nearby people and objects, and
changes to those objects.”

@ A. Dey and Abowd [4]: “Context is any
information that can be used to characterize
the situafion of an entity., An entity is a
person, place, or object that is considered
relevant to the interaction between a user
and an application, including the user and
applications themselves.”

O Pascoe [5]: “Context is the subset of
physical and conceptual states of interest to a
particular entity.”

So what is this leading to? Are those definitions
helpful or misleading? In the sense of a functional
definition they are only helpful as a general
description of what to do. As an application
designer they are only stating what I am doing
anyway: Trying to figure out what input is
needed o produce the desired output. Hence, it is
of topmost importance to have some common
ground or a common “vocabulary” when talking
about what context is. We need some sort of
formal approachfowards handling and describing
Context. Furthermore, in a software engineering
sense, we need building-blocks for building
context-aware applications in a structured way.,
The Context Toolkit [6] by A. Dey is a step into
this direction and a good example for this principle

58 FEAM2esx| M11H M6z (2004. 11)

(fig.1.) The Toolkit includes building blocks called
“Widgets”, wrapper classes for Sensors which
serve as a hardware-abstraction layer,
“Aggregators”, which concentrate multiple input
values to a single output value, and “Interpreters”,
implementing some application logic and
generating application dependant “higher-level”
output based on the input given. They interpret
the incoming data according to a pre-programmed

scheme,

Applications

O Interpreters

35z |
[@) Widgets

i x‘\“"“@:—_;_//\» e

Virtual World

Real World

O Sensors
GED Interfaces/Abstractions

(Figure 1) The Context Toolkit Core Components

With the Context Toolkit, the development of
Context-aware applications basically consists of
several distinguishable steps including 1) The
real-world is sensed: 2) Context is detected,
aggregated, “interpreted”, and 3) Applications are
custom-built to match the “context-detection”
technology. However, we believe that there is
more tool-support necessary for software
engineering and the design of Context-aware
applications than provided today. We want to
emphasize that the way applications are
developed is very dependant on the underlying
technology used, which we consider as bad

practice in the long run. Research in the direction

of decoupling applications from data acquisition
seems to be important. This is detailed in the
Middleware for

Ubiquitous ‘Computing Environments.

section 2, Context-aware

1.3 Middleware and Its Evolution

The role of middleware is to ease the task of
designing, programming and managing distributed
applications by providing a simple, consistent and
integrated distributed programming environment.
Essentially, middleware is a distributed software
layer, or ‘platform’ which abstracts over the
complexity and heterogeneity of the underlying
distributed environment with its multitude of
network technologies, machine architectures,
operating systems and programming languages{7]1.

Different support

different programming models. Perhaps the most

middleware platforms
popular model is Object-based Middleware in
which applications are structured into (potentially
distributed) objects that interact via location
transparent method invocation. Prime examples of
this type of middleware are the OMG's CORBA
[71 and Microsoft’s Distributed COM[7]. Both of
these platforms offer an interface definition
language(IDL) which is used to abstract over the
fact that objects can be implemented in any
suitable programming language, an object request
brokerwhich is responsible for ftransparently
directing method invocations to the appropriate
target object, and a set of services (e.g. naming,
time, transactions, replication efc.) which further
enhance the distributed programming
environment,

Sun’s Jini[8] may also be categorized into

object oriented middleware. In Jini, service objects
register with a centralized lookup-service which
plays the role of matchmaker between clients and
services. After a client finds a service, all
interactions are performed in a location-
transparent manner and without the aid of the
lookup-service. Typically, object-based systems
assume that a connection between a client and a
service object is long-lasting, and therefore these
systems do not address the possibility of
disconnection in ubiquitous and mobile computing.

Not all middleware is object based, however.
Two other popular paradigms are event based
middleware and message oriented middleware
both of

shot’communications rather than the

which mainly employ ’'single
request-reply style communication found in object
based middleware. Event based middlewareis
particularly suited to the construction of
non-centralized distributed applications that must
monitor and react to changes in their
environment. Examples are process control,
Internel news channels and stock tracking.
Ubiquitous and Mobile Systems cover applications
characterized by the heterogeneity of systems and
devices, as well as the (spontaneous) patterns of
interconnection. Due to the unpredictability of
interaction schemes and the preferred use of
asynchronous communication patterns, system
design based on the notion of events seems to be
superior to classical client/server interaction
schemes. It is claimed that event based
middleware has potentially better scaling
properties for such applications than object based

middleware, Message oriented middleware, on the

Middleware for Context—Aware Ubiquitous Computing 59

other hand, is biased toward applications in which
messages need to be persistently stored and
queued. Message oriented middleware supports
data exchange and request/reply style interaction
by publishing messages and/or message queuing

asynchronous
Workflow and

messaging applications are good examples,

in a synchronous and

(connectionless) ~ manner,

The issues of mobile devices (heterogeneity,
scare resources), network connection (limited
bandwidth, high error rate, higher cost, and
frequently unpredictable disconnections), and
mobility (dynamic changes of the environment
parameters) of ubiquitous and mobile systems
posed new challenges to the design of middleware
systems, The middleware need to be designed to
achieve optimal resource utilization, adaptivity and
dynamic reconfiguration, Reflective middlewareis
concerned with applying techniques from the field
of reflection in order to achieve flexibility and
adaptability in middleware platforms. Reflectionis
the capability of a systemto reason about and act
upon itself. A reflective system contains a
representation of its own behavior, amenable to
examination and change, and which is causally
connected to the behavior it describes.
“Causally-connected” means that changes made
to the

immediately reflected in ifs actual state and

system's self-representation are
behavior, and vice-versa.

Tuple Space Middleware systems exploit the
decoupled nature of tuple spaces for supporting
disconnected operations in a natural manner. By
default they offer an asynchronous interaction

paradigm that appears to be more appropriate for

60 FE2HM2E3X HMi1d M6z (2004. 11)

dealing with intermittent connection of mobile
devices, as is often the case when a server is not
in reach or a mobile client requires to voluntary
disconnect to save battery and bandwidth. By
using a tuple-space approach, we can decouple
the client and server components in time and
space. In other words, they do not need to be
connected at the same time and in the same
place. However, since JavaSpaces [9] and
TSpaces [10], the common Tuple Space
Middlewares, typically require at least 60Mbytes
of RAM, they are not affordable by most
handheld devices available on the market
nowadays.

While traditional middleware for Distributed
and Mobile environments do provide the basic
mechanisms for different entities (or agents) to
communicate with each other, they fall short in
providing ways for agents to be context-aware.
The ultimate goal of middleware for traditional
computing environments is providing complete
transparency of the underlying technology and
the surrounding environments, Such an approach
does not work for pervasive computing
applications because being aware of the
surrounding environment is the key to their
effectiveness as we stated earlier. Moreover,
Ublquitous Computing environments feature a
large number of autonomous agents. Various
types of middleware (based on CORBA, Java
RMI, SOAP, etc.) have been developed that
enable communication inferoperability between
different entities, however, existing middleware
semantic

have no facilities fo ensure

interoperability between the different entities.

Since agents are autonomous, it is infeasible to
expect all of them to aftach the same semantics
to different concepts on their own. This is
especially true for context information, since
different agents could have a different
understanding of the current context and can use
different terms and concepts to describe context.
A middleware for context -awareness will address
this problem by ensuring that there is no semantic
gap between different agents when they

exchange contextual information,

2. Middleware for Context-aware
Ubiquitous Computing Environments

2.1 Motivation of Context-aware Middleware

Different approaches have been suggested for
promoting confext-awareness among agents, The
Toolkit approach proposed by Anind Dey et al [6]
provides a framework for the development and
execullon of sensor-based context-aware
applications with a number of reusable
components, The toolkit supports rapid
prototyping of certain types of context-aware
applications, The other approach is developing an
infrastructure or a middleware for confext
awareness. As we stated before, Context-aware
Computing involves acquisition of contextual
information, reasoning about context and
modifying one’s behavior based on the current
context. A Context-aware Middleware would
provide support for each of these tasks and
greatly simplify the tasks of creating and
maintaining confext-aware systems, Middleware

can help in continuous data acquisition, analysis,

and pattern detection to infer higher level context,
and let developers focus mainly on developing the
applications'functionality rather than diverting
their effort to hardware-specific issues. Besides, a
middleware would be independent of hardware,
operating system and programming language and
provide uniform abstractions and reliable services
for common operations. It would, thus, simplify
the development of context-aware applications. It
would also make it easy to incrementally deploy
new sensors and context-aware agents in the
environment. [t would define a common mode! of
context, which all agents can use in dealing with
context. It would thus ensure that different
agents in the environment have a common
semantic understanding of contextual information,
Finally, a middleware would also allow us to
compose complex systems based on the
interactions between a numbers of distributed

context-aware agents.

2.2 Functional Elements of Context Aware Computing

Context aware computing relies on multiple

independent and cooperative enabling
technologies. Based on the extraction of literature
review, we have Iidentified a set of necessary
functional elements that a context aware system
needs support essential context aware
mechanisms. As we argued in previous section,
only a general middleware approach can combine
independent functional elements in context aware
computing, and melt them into a coherent system
to provide a complete solution. These functional

elements include:

2.2.1 Context Sensing

Middleware for Context—Aware Ubiquitous Computing 61

In order to use context in services, there must
be a mechanism {o obtain the confext data from
diverse context sources. For example, the indoor
location of a user can be obtained from an
Infrared location sensor system, which detects the
presence of a badge fo conclude the location of
the user wearing it. Context Sensing could be
tightly-coupled with hardware sensors, while a
component approach to decouple low-level sensing
with high-level context usage can achieve
reusable context sensing, thereby enabling the

evolving of large scale context aware systems.

2.2.2 Context Medel and Representation

Context model forms the foundation for
expressive confex{ representation and high-level
context interpretation[11, 12]. Existing context
models vary in the expressiveness they support
and the types of context they represent, while
their common considerations should be how to
capture general features such as properties of an
entity and inferrelation between contextual
objects. On the context representation layer, raw
material’ of context is transformed info a
machine-readable format based on the context
model. This is actually an abstraction layer that
acquires sensor data from context sources, and
then annotates raw data with semantics that are
structured around a set of contextual entities
(eg., ‘user, ‘location’ and ‘device’.) and the
relations {(eg. ‘locatedin’) that hold between
them. A uniformed context models is needed to
facilifate context interpretation, context sharing

and semantic interoperability.

2.2.3 Context Aggregation
Context information is obtained from an array

62 FEA2/E3 X HM11H Hez (2004. 11)

of diverse information sources. A centralized
context aggregation mechanism can provide a
persistent storage for distributed context,
guarantees integrity of context, and offers shared
mechanisms, relieving context-aware services
from overheads caused by querying from
distributed ~ sensors[13]. When context is
represented based on shared context model,
context aggregation provides a foundation to
merge interrelated information and enables further

data interpretation.

2.2.4 Context Query
To explore general means of access to

interrelated context spread across distributed
context repositories, we need a high-level
mechanism for context -aware services to issue
queries without explicitly handling underlying
data manipulationf14]. For example, a notification
service for conference attendees require context
like “find a list of researchers in this hall whose
publications are in the same session with mine”.
The low-level cperations of such complex context
retrieval task should not be exposed to end users.
Context query poses design issues such as context
query language, event notification, and query

optimization,

2.2.5 Context Reasoning/Inferring
Low-level information usually can not be

directly understood and utilized by software
services, Hence, there is a need to interpret
low-level information and derive additional,
high-level context. For example, a location based
service wants to know the relative location with
different levels of granularity (e.g., room-level,

building-level, block-level) instead of

sensor~driven position (the coordinates retrieved
by the GPS system). In this case, we need to
derive high-level location (e.g., "'which block is the
user in?) from related contexts (eg., GPS
coordinates, the mapping between GPS
coordinates and corresponding blocks). The
leverages

context interpretation layer

reasoning/learning techniques to deduce
high-level, implicit context needed by intelligent
services from related low-level, explicit context.

For example, the rule-based reasoning engine
can deduce user’s current situation based on his
location and environmental contexts. The inferred
context might suggest that the user might be
sleeping currently, since the time is 11 pm and he
is staying at a dark, quiet 'Bedroom’. Another
example of context interpretation could be
machine learning based behavior prediction. The
intelligent system could learn the pattern of user’s
actions from historical sequences of context data
and then use this learned pattern to predict next
event. For example, it could be predicted that
once the user finished showering (turn off the
electronic water heater) after 10:30 pm, he will
check emails using the hand phone, and then go
to bed after finishing reading them. Currently,
context interpretation tasks are performed
through various approaches including ad hoc
interpretation, rule -based reasoning[15]. and

machine learning[16].

2.2.6 Context Discovery

In order for a context aware service to use a
certain kind of context, there is a need for context
requestors to find thesources providing it. The aim

of context discovery is to locate and access

interested context sources in a self-configure
manner. Issues of context discovery include
service description, advertisement and event

subscription[17].

2.2.7 Context-aware Application/Service

Finally, on the uppermost level (context
utilization layer), context aware services utilize
both low-level and high-level context to adjust
their behaviors. The smart phone might then
decide that the user probably does not want to
answer any phone call when he is sleeping at
home and forward those calls to the voice
message box. It also could take account of
predicted context and response by automatically
adjusting the air-conditioning of the bedroom and

downloading emails after the shower before sleep.

23 Some Middleware Architectures for
Context-Aware Computing

A lot of work has been done in the area of
context -aware computing in the past vyears,
among which much of them are only concerned
with one or more aspects in an ad hoc manner. In
addition, most of them rely on proprietary a
protocol, thereby set a barrier to interoperability of
different systems, and exclude developers from

reusing existing components. We are going to give
‘ a summarization of the most prominent projects in

this research field,

2.3.1 Context Toolkit[6]

The seminal work of Context Toolkit developed
a set of abstractions for sensors data processing in
order to facilitate reuse and make context aware
applications easier to build, Context Toolkit

separates the low-level sensing from high-level

Middleware for Context—Aware Ubiquitous Computing 63

applications, and introduces a middleware layer
whose functionalities are collecting raw sensor
information, translating it to an application-
understandable format, and disseminating it to
interested applications. In Context Tookkit, a
“context widget"is a wrapper component that
provides unified access interface to context. To
handle context query and event notification, each
context widget has a state that is a set of
attributes and a behavior that is a set of callback
functions triggered by context changes. The
widget obtains raw contextual information from
sensors and passes them either to interpreters or
to servers for aggregation. Interpreters and servers
use simple HTTP protocol for communication and

the XML as the language model.

2.3.2 Solar [i8]

The Solar system architecture proposed a
graph-based abstraction for context aggregation
and dissemination. The abstraction models the
contextual information sources as event
publishers, and context aware applications as
event subscribers. A number ofevent processing
and routing mechanisms are designed to avoid
redundant computation at context aggregation
and interpretation nodes, and reduce data
transmission in large scale context aware systems,
Applications use a subscription language to
construct a logical event tree, based on event
streams registered in a context -sensitive naming

hierarchy.

2.3.3 Context Fabric[19]

Context Fabric is actually an extension of the
pioneering work of ParcTab system[3]. 1t
distributed

provides a context-aware

64 FEAMZIEX H11A M6z (2004. 11)

infrastructure with two fundamental built-in
services, namely event service and query service,
to support the acquisition and retrieval of context
data. Context Fabric uses an entity-relation sfyled
logical context data model to represent the
information about four kinds of concepts: entities,
attributes, relationships, and aggregates. Context
about each kind of entities are assigned
network-addressable logical storage units called
infospaces that can be directly queried from
network. Context data in Context Fabric is
encoded using XML, and stored in local file
systems, XPath is utilized as the query language
for addressing parts of the XML tree structure.

2.3.4 Gaia [15]

The Gaia project developed at the University of
Mlinois is a distributed middleware infrastructure
thatprovides support for context aware agents in
smart spaces, Gaia adopts a predicate model of
context data to enable agents to be developed
that use first order logic rules to decide their
behavior in different contexts.

It also proposed that different logic reasoning
and machine learning techniques can be adopted
to support context interference according to
different DAML

encoded ontologies is used to ensure semantic

applicalion requirements.
inferoperability between different agents, as well
as between different ubiquitous computing
environments. All agents are implemented on top
of CORBA, and use CORBA Naming Service and
the CORBA Trading Service for service discovery.,

3. Research Issues in Context-aware
Middleware

Context aware computing has been drawing
much attention from researchers for several years,
the four projects described above is an example,
However, context-aware services have never been
widely available to everyday users, There are five
reasons why context aware computing has been
difficult to achieve, First, there is a lack of formal
context model. Current context data models have
generally been application-specific, making it
difficlt to share

heterogeneous systems. Simple and informal

context data across

context models can not support expressive context
representation and complex context inferpretation
[11, 12]. Second, context data come from diverse
context sources such as hardware sensors and
software services. For example, location
information of a user can dynamically come from
RFID, GPS, or cellular network system, while the
location of a restaurant can be queried from a GIS
system. This fact causes the heferogeneity issue.

Third, there is a lack of infrastructure support.
Many of the former projects tightly coupled the
sensing and reasoning tasks with the applications
thus could not promote the flexibility and
reusability of the software systems. Infrastructure
approaches are needed to simplify the tasks of
developing and maintaining confext aware
systems by providing high-level abstractions and
reusable components for common operations [15,
19]. And finally, security issues and privacy
concernsmust be addressed. The dynamism and
ubiquity of the pervasive computing paradigm
raise new issues for information security and user
privacy. This is an especially difficult case because

an important feature of context aware computing

is to share information across users and systems.
Therefore, we need a well-established privacy
mechanism that can balance context sharing and
information security for context aware computing
[11, 20]. We are going to discuss these issues in
three main research sub-areas: Formal Confext
Modeling, Context Reasoning Mechanisms, and

System Paradigm Design Factors,

3.1 Formal iModeling for Context Data

3.i.1 Why Formal Context Modeling is needed?
Context presentation is an important part of
pervasive compuiing environments. Because
context-aware applications must adapt to
changing situations, they need a detailed model of
usersactivities and surroundings that lets them
share usersperceptions of the real world, These
entities may have different meanings associated
with them in different pervasive environments, In
order to have invariantmeanings of these entities,
when used at different times, in different
situations, by different applications, they must be
formalized, ie. the context semantics should be
formalized. Formalizing the context of an
application has a number of clear advantages.
First, it allows us to store the context for a long
term since ifs meaning will remain same for
future wuses. The second advantage is for
communicaling the context universally with other
systems, Third, formal meaning of the context
leads fo its testability of being a formalized
knowledge. So, formalizing, the context model,
help to make a growing pool of well-tested
context different

knowledge available to

context-aware systems.

Middleware for Context—Aware Ubiquitous Computing 65

Most context-aware systems to date mainly
focus on the contents of context, neglecting the
importance of inferactivity among applications.
Some have model the context as name-value
pairs[6] and entity relation model, while others
have used objects [21] to represent context, with
fields containing state of context, methods to
access, modify and/or register for notification
changes to context. However, context reuse and
sharing among wider application domains demand
a need for formal context modeling enabling

common understanding of the structured context.

3.1.2 Formal Context Modeling using OWL Ontologies

Context entities are the concepts in a domain of
discourse, and to provide formal meaning of these
concepts, ontologiesare used. Within the domain of
knowledge representation, the term ontology
refers to the formal, explicit description of
concepts, which are often conceived as a set of
entities, relations, instances, functions, and axioms,
leading to shared and common understanding that
can be communicated between people and
application systems([22]. Formalizing domain not
only contains the vocabularies of concepts but
relationships among them as well. W3Cs OWL
(web ontology language)[23] allows us to achieve
this goal in two steps, First, it allows us to define
concepts and their inter-relationships eg.
describing person, devices, location etc. Second, it
allows us to define instance data pertaining to
some specifictime and space e.g. Bob is watching
television. Traditionally, ontologies are only used
to describe domains (as mentioned above) but in
QOWL, the horizon of ontology has been broadened

to include instance data as well, effectively

66 FEXMIESA H11H AEE (2004, 1)

making the knowledge base.

OWL, a knowledge representation language,
has explicit semantics associated with the
knowledge, which provides reasoning capabilities
used by intelligent systems and agents to infer
useful contexts, As OWL is based on
meta-modeling language (RDF [24]). it can be
used to represent meta-information about sensors,
we can also use OWL to represent access
mechanisms to the sensors and associated policies,

The following example shows the context

ontology that describes a user named Hung.

{User rdf:about="Hung")
{nameyHung{/name)
{mbox)nghung @oslab khu.ac kr{/mbox)
<homepage rdf resource="http://ucg khuackr
/~nghung”/>

{office rdf:resource="#RoomB07"/)
{officePhone»2493{/officePhone)
{mohilePhone»9999¢/mobilePhone)

<! More properties not shown in thisexample)
{/User)

©Room B (©) AddocActivity
(;) %lm" B8 (© fioem Offic (C) AdHocDiscussion
(© Adhochetivity (© LabRoom (C) TakingPhone
(@5‘,1 drtedActivity Lounge
B (© Computngentiy (O ietinghoom B (©) Schaduledactivity
©hoem — {O) otficaRtoom © nervict
(S) Apstication ©Pantry (C) Seminar
Oavica
atisork VashRoom e
%t“. 12R Workplace
8 (©toction ©room
B (©)indoortLocation Bl (©) foom Hoe
Buliding BathRoom
Passagaiay =] Badroom
% Room UasterRadroom
» GuostBadroom
B (©) oudoorLoczton {©) ChitdrenBacroom
Qety {©) DiningRoom
Digirict @ Kitchen
Qrom B
v o (© ReadingRoom
8 Qu=r ©)storsRoom 1R Smart Home Prototype

Upper-level context omology Exiended context ontologies

{Figure 2) An example of Context Ontology for Smart
Spaces [25)

(Figure 2) presents an example of ontology

system with upper-level ({generic) context
ontology and extended (domain specific) context

ontologies for Smart Spaces[25].

3.1.3 Benefits of Semantic Web Ontology for Context
Modeling

There are several potential advantages for
developing context models based on Semantic
Web Ontology. First, its expressiveness. Web
ontology is modeled through an object-oriented
approach, with expressive power entailed by their
class/property constructors and axioms. Therefore
it is more expressive than existing context models
allowing us to capture more features of various
types of context. Second, Knowledge Sharing.
The wuse of

computationalentities such as agents and services

context ontology enables
in pervasive computing environments to have a
common set of concepts about context while
interacting with one another. By allowing
pervasive computling entities to share a common
understanding of context structure, OWL
ontologies enable applications to interpret contexts
based on their semantics.

Third, based on ontology, context -aware
computing can exploit various existing logic
high-level,

low-level, raw

inferencemechanisms to deduce

conceptual context from
contextand to check and solve inconsistent
context knowledge due to imperfect sensing.
Because contexts described in ontologies have
explicit semantic representations, Semantic Web
tools such as federated query, reasoning, and
support context

interpretation. Incorporating these fools into smart

knowledge bases can

spaces facilitates context management and
Fourth,

Ontologies’ hierarchical structure lets developers

interpretation. Knowledge Reuse.
reuse domain ontologies (for example, of people,
devices, and activities) in describing contexts and
build a practical context model or compose
large-scale context ontology without starting from
scratch. And lastly, it provides extensibility,
Concepts in the context ontology are organized in
form of taxonomies or hierarchies. Newly-defined
concept can be easily added into the existing

context ontology in a hierarchical manner.

3.1.4 Future Research for Context Ontology

The idea of ekploring Web Ontology Language
to model context creates opportunities, while also
opens up severalopen issues for further study.
Here we discuss three main issues: 1) Model
Transformation for Machine Learning, 2)
Extending OWL for quantitative features, and 3)
Privacy Control,

Model Transformation for Machine Learning.
As we mentioned, in addition to logic reasoning.
machine learning is another feasible approach to
derive high-level context from low-level context
[35, 36]. In fact, a large amount of context-aware
tasks (e.g., a home-care service uses predicted
user behaviors to optimize inhabitant comfort)
require machine learning mechanisms. Unlike logic
reasoning that can be directly supported by
ontology models, machine learning requires
training data in form of different dedicated
models (e.g., Markov chains, feature vectors, etc).
Therefore, it requires further study on how to
transform ontology based context model to
dedicated models for

specific learning

Middleware for Context—Aware Ubiquitous Computing 67

mechanisms. One direction is to study the model
requirements of general machine learning
algorithms (e.g., Markov chains, Bayesian
learning, neural networks, reinforcement leaning,
etc). and provide an algorithm-specific model
transformation mechanisms,

Extending OWL for quantitative features.
Through the above study in context modeling, we
can see that OWL and entailed description logic
are necessary for modeling general concepts of
context. However, the limitation of description
logic makes OWL insufficient for modeling
quantitative features of context such as order,
quanfity, time, quality of information, or
uncertainty/probabilities, Unfortunately, capturing
such features is critical to certain tasks such as
data fusion dealing with uncertain or incomplete
sensor context [38]. Therefore, we need study
how to extend OWL models with capahilities to
express quantitative concepts, thereby enabling
temporal reasoning and probabilistic reasoning in a
formal approach.

Privacy Control. The dynamism and ubiquity of
the pervasive computing paradigm raise important
challenges for information security and privacy.
Moreover, Semantic Web as a whole is largely
conceived as an open network to share
information, and can not support any privacy
confrol mechanism. Therefore, we require the
context model to provide a working privacy
mechanism that can balance knowledge sharing
and information privacy for context aware

computing.

3.2 Reasoning for High level Context

68 ZHEAM2SEK HMi1@ HMeE (2004. 1)

3.2.1 Context Reasoning Mechanisms.

Different types of entities (software objects) in
the environment must be able fo reason about
uncertainty., These include entities that sense
uncertain contexts, enfities that infer other
uncerfain confexts from these basic,
sensed/defined contexts, and applications that
adapt how they behave on the basis of uncertain
contexts. A middleware infrastructure is expected
to facilitate computing entities with a variety of
reasoning and/or learning mechanisms to help
them reason about contex{ appropriately, Using
these reasoning or learning mechanisms, entities
can Infer various properfies about the current
context, answer logic queries about context or
adapt the way they behave in different contexts.

Agents can reason about context using rules
written in different types of logic like first order
logic, temporal logic, description logic (DL) [26],
higher order logic, fuzzy logic, etc. Different
agents have different logic requirements. Agents
that are concerned with the temporal sequence in
which various events occur would need to use
some form of temporal logic to express the rules.
Agents that need to express generic conditions
using existential or universal quantifiers would
needto use some form of first order logic (FOL).
Agents that need more expressive power (like
characterizing the transitive closure of relations)
would need higher order logics. Agents that deal
with specifying terminological hierarchies may
need description logic. Agents that need to handle
uncertainties may require some form of fuzzy
logic.

Instead of using rules written in some form of

logic to reason about context, agents can also use
various machine learning techniques to deal with
confext. Learning techniques that can be used
include Bayesian learning, neural nefworks,
reinforcement learning, etc. Depending on the
kind of concept to be learned, different learning
mechanisms can be used. If an agent wants to
learn the appropriate action to perform in different
states in an online, interactive manner, it could
use reinforcement learning or neural nefworks, If
an agent wants to learn the conditional
probabilities of different events, Bayesian learning

Is appropriate,

3.2.2 Context Reasoning using Description Logic (DL) [26]

Description Logic(DL) allows specifying a
terminological hierarchy using a restricted set of
FOL (first order logic) formulas. The equivalence
of OWL and description logics allows OWL to
exploit the considerable existing body of DL
reasoning including class consistency and
consurmnption, and other ontological reasoning. The
formal semantics entailed by description logic can
be used to automatically reason about the context
knowledge to fulfill

requirements, These requirements include concept

important logical

satistiability (whether concept can exist), class
subsumption (whether class C is a sub-class of
class D), class consistency(whether all the
definitions of classes, properties, and relations in a
context ontology are satisfiable), and instance
checking (whether a context instance is satisfied
to the context ontology).

The following is an example for Description
Logic Rules to infer user location. If we have the

rules that locatedIn has a transitiveProperty, and

isPartOf is subPropertyOf locatedIn,

{owl:ObjectProperty rdf:ID="locatedIn”)
(df:type rdf:resource="&owl: Transitive
Property™ />
{/owl:ObjectProperty)
{owl: ObjectProperty rdf:ID="isPartOf "
{rdfs:subPropertyOf rdf:resource=
" #tlocatedIn” />
{/owl:ObjectProperty)

And if we have the location of a user Bilbo is
in bedRoom

(Room rdf:ID="bedRoom™>

(isPartOf rdf:resource=""#home"/>

{/Room)

(Agent rdf:ID="Bilbo">

(JocatedIn rdf:resource =" #bedRoom"/>

{/Agent)

Then we can can infer bedRoom is in home:
(Room rdf:ID="bedRoom">

(locatedIn rdf:resource="#home"/>

{/Room)

And we can can also infer Bilbo is at home,
{Agent rdf:ID="Bilbo™)

(locatedIn rdf:resource =" #home”/»
{/Agent)

3.2.3 Context Reasoning using First-Order Legic (FOL)

The user-centric design rationale of context
aware systems requires more flexible logic
reasoning mechanisms than description logic
reasoning. By customizing reasoning rules within

the entailment of first-order logic (actually a

Middieware for Context—Aware Ubiquitous Computing 69

subsef of first order logic, as OWL is less
expressive than FOL), a wide range of high-level,
conceptual context such as “what the user is
doing” can be deduced from low-level context.
The following is a sample rule that infer a
user's likely situation based on context, activity,

location, and computing entity.

type(?user, User), type(?event, Meeting),
location(?event, ?room), locatedIn(?user,
7room),

startDateTime(?event. ?t1),
endDateTime(?event, ?t2), lessThan(?t],
currentDateTime()),

greaterThan(?t2, currentDateTime())
=>situation(?user, AtMeeting)

324 Context Reasoning using Probabilistic and
Fuzzy Logic
Probabilistic logic lets us write rules that reason
about eventsprobabilities in terms of the
probabilities of other related events. An example

rule (written in XSB) is

prob(X, Y, union, P) - prob(X, Q). prob(Y,
R), disjpint(X, Y), (P is Q + R).

This rule essentially says that Pi{X U Y) =
Pr(X) + Pr(Y) if X and Y are disjoint events,
that is, they never occur together. X and Y can
be context predicates. For example, X could be
location(Bob, in. Room 2401) and Y could be
location(Bob, in, Room 3234). X and Y are disjoint
events, since Bob can't be In two different

locations at the same time [15].

70 BEMIFSK H11H M6z (2004, 11)

Fuzzy logic is somewhat similar to probabilistic
logic. In fuzzy logic, confidence values represent
degrees of membership rather than probability.
Fuzzy logic is useful in capturing and representing
imprecise notions such as “tall,” “trustworthy,”

and “confidence™and reasoning about them.

1,(x) a4x)

t
5 Silent oderate Loud 1{ Silent Moderate Loud
0]
(@) Feature 1 (1] Fealure x

(Figure 3) An example of Fuzzy Logic for audio feature [27]

For example, in quantizing environment sound
mtensity, the quantization divides the processed
feature into three quantities - Silent, Moderate,
and Loud - corresponding to the three
membership functions denoted as L(x). Apply a
fuzzy set for features, resulting in continuous
valued fuzzy labeling (Figure 3). For example,
L(x) = 0.7 / Silent + 0.3 / Moderate + 0 / Loud
[271.

3.2.5 Context Reasoning using Bayesian Networks
Bayesian networks are directed acyclic graphs,
where the nodes are random variables
representing various events and the arcs between
nodes represent causal relationships. Bayesian
networks are a powerful way of handling
uncertainty in context data, especially when there
are causal relationships between various events.
They are useful for performing probabilistic sensor
fusion and higher-level context derivation. In
general, root nodes in the Bayesian network
represent the information to be deduced, while the

leaves are sensed information. The intermediate

nodes are important sub-goals that are helpful to
the deduction process.

Second-leve! .
contexis Tecati -mz-
poets [\ Endommeny By < oganr [1]
coalexts)
Bayesian
lassification
First-level Do 9
contexts .
{contexi atoms) ?:;ﬂ;ﬂ;:l :z
— Artiticial || 0|
Hatural
S0Hz e
E0Hz 1
Environment Nom;ar:abla u13
¢ Hormal (6.7
Humid 8
e, Cold 0
\\“\w Hormal 1
Hot]

{Figure 4) An example of Bayesian Network to deduce
the location (indoor/outdoor)

Figure 4 irfroduces the formation of the higher
level context Outdoors from the context atoms (or
low level sensed contexts) using a nave Bayesian
network [27]. White rectangular boxes represent
types and light tan boxes represent context
values. Dark tan boxes contain the corresponding
confidence instance values for the current
situation. The nave Bayesian network classifies
the confidence instance values into one of the
previously defined output classes, Indoors and
Outdoors in this network.

The nave Bayes classifier works well for online
context inference and sensor fusion mainly
because 1) It has proven robust even with
missing, uncertain, and incomplete information.b.
2) 1t is computationally efficient. Training and
inference both have a linear complexity in nput
data size. And 3) It requires no background
information modeling except for choosing the

relevant network inputs.

3.2.6 Challanges in Context Reasoning

The decision on what kind oflogic or learning
mechanism to use depends not only on the power
and expressivity of the logic, but also on other
issues like performance, tractability and
decidability, According to the feature of the tasks,
different learning mechanisms can be used in
ahybrid manner. For example, learning based on
Bayesian networks and explicit rules written in
probabilistic or fuzzy logic are useful in different
scenarios, Bayesian networks are useful for
learning the probability distributions of events and
enable reasoning about causal relationships
between observations and the system state, They,
however, must be frained before they can be
used. but because they are flexible and can be
retrained easily, they can adapt to changing
circumstances. Probabilistic logic is useful when
we have precise knowledge of eventsprobabilities:
fuzzy logic is useful when we want to represent
imprecise notions. Both probabilistic and fuzzy
logic are useful in scenarios where getting data fo
train a Bayesian network is difficult. This is
especially true in the area of security. Beside this
first challenge in choosing the most relevant
reasoning mechanism for each high level context,
middleware system must also facilitate the ability
to plug in new reasoning mechanisms. The use of
a fixed APIs between the reasoning engines and
other software entities using them appears to be
a feasible solution for adding different reasoning

engines easily.

3.3 Consideration Faciors for System Paradigms

Let us have a look at some of the envisioned

Middleware for Context—Aware Ubiquitous Computing 71

consequences for research in applications of
Ubiquitous Computing systems. In this section we
try to give taxonomy of typical Ubicomp
applications, The relevant coordinates for the
taxonomy are depicted in Figure 5 and we
believe that these scales are important for
characterizing Ubicomp applications on a
qualitative level, which in tun affect the

middleware system paradigm.

Three Dimensions of
Ubicomp Systems

FocusiScope
—‘}» People (Who™)

+ Places (Where")

-1~ Things (‘What")

wow
s & Sty
24
N\de\?as \ze
Dynamics/Evolution Scale

(Figure 5) Three Dimensions of Ubicomp Systems

3.3.1 System Focus or Scope

Applications are designed to cover some
application domain, A commonclassification in this
area is “People, Places, and Things” originating
from the HP Cooltown research project [28].
Usually, one can identify a central focus of an
application related to one or two of these
topics.For example, a tourist guide is focused on
giving information to a user. This is the main
focus. However, it gives information about places:
therefore, it has places as a secondary focus. But
to be successful it has to bring information about
places to users in an appropriate way (for the
user), hence, “people” is the main focus

(“subject™) and places are the secondary focus

72 Fex(EEX Mg Moz (2004. 1)

(“objects™) of the system.

3.3.2 System Scale

Scale is an Important factor for system and
application design. Is a system designed for a
rather small place and covers a rather small range
(like, e.g., a Smart Home application) or does it
scale up to something like a public space (eg., a
train station) or even to cover somefhing larger
like a city or a country (geographical scale)?
Obviously, this has some fundamental influence
on system design. Another sub-dimension is the
number of participants in a system. A Smart
Home application might have to handle a couple
of dozens objects and subjects (the fridge, the
home entertainment center, the garage door, etc.
Here the requirements for system design are
completely different. For example for a smaller
application it might be perfectly sufficient to have
no common infrastructure for data exchange and
communication, and an ad-hoc network and
broad- or multicast communication might suffice.
On a larger scale this approach is not feasible due

to the traffic this style of communication implies.

3.3.3 System Dynamics/Evolution

This is the most driving factor for Ubicomp
applications. Ubicomp is inherently “mobility
driven” and “dynamic”: People are moving, as
well as things, and sometimes even the places are
moving around {e.g., cars or trains). This imposes
serious design challenges for system, as well as for
application designers: Associations between
communicating parties are volatile, so might be
data/information (especially by third parties),
data is belonging to someone else: everything is -

in a sense - “floating around.” And the

consequences would be:

® System and application design will have to

take dynamics (on every level) into account

@ Bindings will be casual and volatile, due to

mobility.

® Systems have to be built along with a

changing society, not against.

Also a consequence of the highly dynamic
nature of Ubicomp applications is the need for
evolvable systems, It can be expected that such
systems must be open, flexible, and extensible.
The reason is obvious; we cannot make
assumptions about the capabilities, the operating
systems, the installed software, or the style of
communication devices have, On the other hand,
we cannot make assumptions about what services
can be used, what QoS can be expecfed, or what
“version” of service is “installed”. Therefore, it is
mandatory to build systems in an open, flexible,
and extensible fashion, Especially in highly
dynamic systems with many different users this
requirement is extremely important. Systems
might be more long-lived than devices the users
bring along: therefore, they have to be extensible
to new standards and requirements, On the other
hand, users cannot make assumptions about the
services and infrastructure they will find at
different places. Their devices must be capable of
adapting to the situation found at hand. For
instance, service discovery is important. Not every
public place has the same infrastructure and
services “installed” party has to have the
capability to evolve and adapt.

A mandatory requirement for Ubicomp systems

and applications is that the actual functionality is

determined at “runtime” opposed to determine the
functionality at “compile time,” ie., the moment
the device is deployed. Here an important
requirement is to have an effective and efficient
data-management in term of retrieval of relevant
information, like relevant services, relevant data
(eg, for Context determination) and other
information needed depending on the actual

application.

4, Summary

In this article we address some system
challenging issues In
Middleware for

Ubiquitous Computing, The functionalities of

characteristics and
developing Context-aware
aContext-aware Middleware includes gathering
context data from hardware/software sensors,
reasoning and inferring high-level context data,
and disseminating/delivering appropriate context
data to interested applications/services. The
Middleware should

aggregation, and discovery for the contexts, as

facilitate the query,

well as facilities to specify their privacy policy.
Following a formal context model using ontology
would enable syntactic and semantic
interoperability, and knowledge sharing between
different domains. Middleware should also provide
different kinds of

mechanisms as pluggable modules, including rules

context classification
written in different types of logic (first order logic,
description logic, temporal/spatial logic, fuzzy
logic, etc.) as well as machine-learning
mechanisms (supervised and unsupervised
classifiers). Different mechanisms have different

power, expressiveness and decidability properties,

Middleware for Context—Aware Ubiquitous Computing 73

and system developers can choose the appropriate
mechanism that best meets the reasoning
requirements of each context. And finally, to
promote the context-trigger actions in application
level, it is important to provide a uniform and
platform-independent interface for applications to
express their need for different context data
without knowing how that data is acquired. The
action could involve adapting to the new
environment, notifying the user, communicating
with another device to exchange information, or

performing any other task.

References

[1] M. Weiser: Scientifc America. The Computer
for the 2lst Century. (Sept. 1991) 94-104;
reprinted in IEEE Pervasive Computing,
(Jan,-Mar. 2002) 19-25

[2] http://www.ubig com/hypertext/weiser/
SciAm Draft3.htmt

[3] Schilit, B. N., N.I. Adams, and R. Want:
Context -Aware System Architecture for
Mobile Distributed Computing. PhD thesis,
1995.

[4] Dey, AK, et al.: A Conceptual Framework
and a Toolkit for Supporting the Rapid

Prototyping of Context-Aware Applications.

Anchor article of a special issue on

Context-Aware Computing, Human-
Computer Interaction (HCI) Journal, Vol. 16,
(2001)

[5] Pascoe J., Ryan, N. S, & Morse, D. R, (1998).
Human-Computer-Giraffe Interaction HCI in

the field. Proceedings of the Workshop on

74 FEANEEG X H11E H6E (2004. 11)
Human Computer Interaction with
MobileDevices, Glasgow, Scotland.

[6] Context Toolkit project http://www.cs.
berkeley edu/~dey/context. html

(7] W. Emmerich. Engineering Distributed
Objects. John Wiley and Sons, Ltd., 2000.

[8] K. Edwards. Core JINIL Prentice Hall, 1999.

[9] Sun. Javaspaces. http://www.sun.com/
jini/specs/jinil. 1html/js-title html, 2001.

(10] IBM. T Spaces. hitp://www.almaden.
ibm.com/cs/TSpaces/, 2001.

[11] Xiaodong Jiang, James A. Landay:

Modeling Privacy Control in Context Aware
Systems. IEEE Pervasive Computing, Vol. 1.
No. 3 July-September 2002.

[12] Philip Gray and Daniel Salber: Medeling and
Using Sensed Information in the Design of

Applications, ~ 8th IFIP
International ~ Conference, EHCI 2001,
Toronto, Canada, 2001

[13] Guanling Chen and David Kotz: Context

Aggregation and Dissemination in Ubiquitous

Interactive

Computing Systems, In Proceedings of the
Fourth IEEE Workshop on Mobile
Computing Systems and Applications, June
2002.

[14] Jeffrey Heer,Alan Newberger, Chris
Beckmann, and Jason I Hong: liquid:

Distributed
Ubiquitous Computing, 5th International
Conference, Seattle (UbiComp 2003), October
12-15, 2003.

[15] Anand Ranganathan, Roy H. Campbell: A
Middleware for Context -Aware Agents in

Context -Aware Queries.

Ubiquitous Computing Environments, In

ACM/IFIP/USENIX International Middle-
ware Conference, Brazil, June, 2003.

[16] S. K. Das, D. J. Cook, A. Bhattacharya, E. O.
Heierman, III, and T.-Y. Lin: The Role of
Prediction Algorithms in the MavHome
Smart Home Architecture, IEEE Wireless
Communications Special Issue on Smart
Homes, 9(6), pages 77-84, 2002.

[17] G. Thomson, S. Terzs, and P. A. Nixon:
Towards Dynamic Context Discovery and
Composition. The First UK-UbiNet
Workshop, London, UK, 2003,

(18] Guanling Chen and David Kotz.: Solar: An
Open Platform for Context Aware Mobile
Applications. In Proceedings of the First
International ~ Conference on Pervasive
Computing (Pervasive 2002), Switzerland,
June, 2002.

[19]7 Hong, J. I, et a.: An Infrastructure
Approach to Context -Aware Computing.
HCI Journal, 2001, Vol. 16.

[20] Asim Smailagic, Daniel P, Siewiorek, Joshua
Anhalt, David Kogan, and Yang Wang, :
Location Sensing and Privacy in a Context
Aware Computing Environment, Pervasive
Computing, 2001

[21] S. S. Yau, F. Karim, Y. Wang, B. Wang,
S.Gupta: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing.
(Jul.-Sep. 2002) 33-40

[22] J. Davies, D. Fensel, F. V. Harmelen:
Towards the Semantic Web,
Ontology-Driven Knowledge Management,
John Wiley & Sons. (Nov. 2002)

[23] W3C Web Ontology Working Group: The

Web Ontology
http://www w3.0rg/2001/sw/WebOnt/
[24] Klyne, G., Caroll, J. J.: Resource Description

language: OWL,

Framework Abstract Concept and Syntax.
W3C Recommendation. (10 Feb. 2004)

[25] Xiachang Wang, Daging Zhang, Jinsong
Dong, et al, Semantic Space: A Semantic
Web Infrastructure for Smart Spaces. [EEE
Pervasive Computing, Vol. 3 No. 3, 2004

The Authors

. Hung Q. Ngo

Hung Q. Ngo is a Master student in the Computer
Engineering Department at Kyung Hee University. His
research interests include Real-time Embedded Systems,
Middleware for Context-awareness, Middleware for
Sensor Network, and Ubiguitous Computing. e received
a BS in Electrical and Electronic Engineering from
HoChiMinh City University of Technology (HUT),
Vietnam, with honors. Contact him at

* nghung@oslab.khu.ackr

Middleware for Context—Aware Ubiquitous Computing 75

[26] Baadar. F. Horrocks, I, Sattler, U.:
Description Logics. Handbook on Ontologies.
(2004)3-28

[27] Korpipaa, P.: Mantyjarvi, J.: Kela, J.:

Keranen, H.; Malm, E.J. Managing context

information in mobile devices.: Pervasive

Computing, [EEE 2 .3 ,2003 Pages:42 - 51

[28] Cooltown Project, http://www.cooltown.com

/cooltown/index asp

I] Sungyoung Lee
Sungyoung Lee is a Professor in the Department of
Computer Engineering, Kyung Hee Unjversity, Korea. His
research interests include Ubiquitous Computing,
Middleware, Embedded System, and Mobile Computing.
He received a PhD in Computer Science from [llinois
Institute of Technology, Hlinois, USA. He is a member of
the IEEE, the ACM, the KISS and the KIPS. Contact
him at sylee@oslab.kyunghee.ackr.

Acknowledgements

This works is supported in part by the Ministry
of Information and CommunicationsTTRC

Program (joint with Sun Moon University)

