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This article was edited by Professors M.H. Kim
and K.W. Rim, adapting some materials from the
paper(1] and some materials recently provided by
Professor K.H. (Kane) Kim.The purpose of this
article is to introduce the time-triggered
message-triggered object (TMO) programming
scheme, which is a powerful and easy-to-use
scheme suitable fordeveloping a wide range of
real-time applications from complex real-time
systems to small embedded real-time systems.
The editors (M.H. Kim and K.W. Rim) hope that
this article could provide the readers some
valuable insights into the potential impacts that
this modern real-time distributed programming
technology might have on consiruction of
ubiquitous computing societies in the next decade
and beyond. Section 5 is given by the editérs to
help readers get some feel about open research
directions on TMO.
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1. Introduction

cutting-edge
movements initiated In 1990s in software

Among  several technology

engineering is the high-precision real-time(RT)
object-oriented(OO)

{2-111. In our view, the most important goal of

programming  movement

that movement has been to instigate a quantum
productivity jump in software engineering for RT
computing  application  systems.  Particularly
targeted application domains have been those
challenging large-scale distributed / parallel
computing applications in fields such as factory
automation, felecommunicafion, defense, intelligent
transportation, emergency management, etc,

As construction of ubiquitous computing
societies has become a subject of serious national
interests in many advanced countries and along
with it demands on RT distributed computing
(DC) applications are growing fast, if seems
timely to reflect a bit on the state of the art and
future directions. The RT OO DC programming

movement Is still in its youthful stage and its
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impact has just started surfacing up. However, its
great potential is now much more clearly and
widely recognized than it was in 1990's,

In the next section, the motivations for pursuing
the OO RT programming approach are reviewed
and then in Section 3, a brief overview is taken of
the particular programming scheme which the
first author and his collaborators have been
establishing, This high-level RT DC object
programming scheme is called the Time-triggered
Message triggered Object (TMO) programming
scheme,

The desirable features of middleware providing
execution support for OO RT distributed
programs are discussed in Section 4. In section 5,
some of recent TMO-related research works are
described and, finally, section 6 summarizes this

article,

2. Motivations for using the OO0 RT
distributed programming approach

2.1 Needs of modem RT distributed programming
technologies in constructing ubiquitous computing
societies

Starting in mid-1990's, the field of RT
computing applications has been showing a rapid
growth pattern. Computer systems in those
application domains are generally responsible for

RT controlof physical devices, RT storage and

search for information, and RT communication

and display of information. In addition, they are
often tasked to perform RT simulation of their
application  environments, The  field of

computer-embedded communication-equipped

system engineering has been growing particularly
fast in recent years.

Now it is a fashion and a subject of national
pride in advanced countries to build ubiquitous
computing societies. The parts of the ubiquitous
computing societies which require new-generation
RT distributed programming technologies for their
construction are bound to increase rapidly in
coming vears. Visionaries have been drawing
pictures of societies where old weak people living
without companions are continuously monitored
by nearby as well as remote machines for their
health-related behavior and receive timely rescue
serviceswhenever they fall into such conditions.
In such advanced socielies, substantial parts of
the actions taken currently by human drivers of
cars, including safe-critical actions, may also be
delegated to infelligenf machines. With
conventional RT programming styles and
associated methodologies that have been practiced
by programmers using assembly languages, C, or
other similar low-level languages, it is very
difficult to construct safe and dependable
ubiquitous computing sociefies of the types
sketched above,

As a result, industry has felt an acute need for
RT distributed programming and software
engineering methods which are at least multiple
times more effective than currently widely
practiced programming techniques. Continuous
use of old low-level programming styles is not
economically viable for dealing with increasing
demands for new RT application systems. The
distributed

engineering method must be based on a “general

new-generation RT software
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high-level programming style” which can be
accommodated  with minimal efforts by
current-generation business application
programmers (using C++ and Java) rather than
on a style that has been practiced by assembly
language or low-level language programmers.

Designers must be required to specify both the
interactions among DC program components and
the timing requirements of various actions in
natural intuitively appealing forms only. The fact
that distributed objects represent a higher-level
structure for DC programs than distributed
processes do have been widely recognized by the
industry in the past 12 vears, eg. technology
movements such as CORBA[11], DCOMI[12],
RMI[13], and NET[14]. Naturally, quite a few
researchers started at various points in the past 12
years searching for extensions of distributed
objects that allow unambiguous specification of
timing requirements imposed on  various
computations units{2-11, 17, 18]. However, up to
now the industry practice in designing RT
computer systems has been predominantly to
structure software as a sef of concurrent processes
and assign fixed priorities to the processes.

The essence of RT computing is to effect
important output actions within precisely specified
time-windows. In RT DC systems, if an output
action of a node becomes ready only after
manipulating some data coming from another
node, then the production of the data by the latter
node and its communication to the former node
must all occur in time for enabling the oufput
action to be within the specified time-window.

Therefore, the top-level output deadlines

shoulddrive the selection of deadlines for various
computational milestones such as completionof a
certain function or object method, a message
generation by a process, a message pickup by a
process, etc[15]. The latter deadlines may be
viewed as intermediate deadlines. It is thus
prudent and safe to use execution resources in the
direction toward minimizing the probability of
missing any of these intermediate deadlines and
of course, top-level output deadlines. Given this
accepted as the main goal, fixed-priority process
structuring is a highly indirect and ineffective
way for approaching the goal. When we divide
various  computational  responsibilities  for
accomplishing the RT application into a group of
processes, each process will generally be subject to
multiple intermediate deadlines, each imposed on
a different milestone within the process.
Translating such multiple deadlines into an
effective single fixed-priority number attached to
the entire process is impractical in most cases !

To put it differently, modern RT 'DC
applications are much more complicated than
what can Dbe adequately represented by
fixed-priority processes. First of all, typical
applications involve multi-step fusion of data from
distributed sensors. Fusion of new sensor data
with the contents of a database, e.g., historical
records on sensor data, is also of frequent
necessity. Secondly, more often than not, it is
necessary to facilitate sharing of data between
periodic, or more generally, time-triggered(TT)
data acquisition operations and event-triggered
reactive operations.

It is thus clear from the above discussions that
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it is natural for RT application programmers to
think about start-time-windows and completion
deadlines of RT computation-segments rather
than priority numbers, The timing requirements
in most modern RT DC applications cannot be
expressed in understandable forms as functions of
priorities[ 15, 16] !

Therefore, designers should not be forced to
deal directly with notions such as priorities for
expressing application timing requirements, Some
people may suggest that designers need to assign
priority numbers to computation-segments
because if computing resource failures occur and
the resulting resource shortage dictates sacrificing
the abilities to meet all timing requirements of all
computation-segments, less important
computation-segments should be sacrificed [19].
If such a decision is represented by assignment of
low priorities to the victimized computation-
segments, then the priority 1s really a number
represenfing criticality or importance rather than
a fiming requirement. Expressing criticality is an
issue orthogonal to that of expressing fiming
requirements. Expressing criticality can be
combined with more appropriate approaches for
expressing timing requirements such as specifying
in terms of start-time-windows and completion
deadlines of RT computation-segments,

Priorities are usually asscciated with low-level
computation units such as processes and threads
and may be used inside the execution engine than
directly manipulated by human users. If a DC
application is designed in the form of a network of
DC objects and a certain object method needs to

be started within a certain time-window and

completed by a certain deadline, the start-
time-window and the completion deadline should
be expressed in a natural form as parts of the DC
object design. It is a very difficult job for the
application designer to assign priority numbersto
the objects and methods, hoping that they will
reflect the desired start-time-windows and

completion deadlines.

2.2 Should RT programming remain an esoteric
branch of computer science and engineering ?

It is fair to say that up to now, RT
programming hasbeen treated as an esoteric
branch of computer science and engineering.
Very few universities have courses on RT
programming and even those few existing courses
are almost entirely graduate courses.

The main reason is that RT programming has
been practiced largely as an ad hoc art in a form
looking quite alien to the vast number of business
and scientific application programmers. On the
other hand, there is no reason why future RT
computing cannot be realized in the form of a
generalization of the non-RT computing, rather
than the other way around. (Figure 1) depicts
this,. If the (traditional)

programming science is viewed as a study of the

main-stream

two-dimensional space, (data operation), then a
proper form of RT programming should be
practiced as work within the three-dimensional
space, (data operation time). Of course, the less
the programmer is burdened with the work on the
time dimension, the better off. We just need a
powerful programming scheme capable of dealing

with all practically useful RT and non-RT
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compufing requirements in uniform manners.
Under such a properly established RT
programming methodology, every practically
useful non-RT program must be realizable by
simply filling the time constraint specification part

with the default value “unconstrained”.

Ti:\/\

Data

Non-RT programming

‘o

(Figure 1) RT programming as a generalization of
non—RT programming

2.3 Reliability of RT distributed programs

RT programs have been notoriously difficult to
analyze. It is well known that testing alone does
not ensure sufficiently high reliability of RT
programs. Given rapidly increasing demands for
RT application systems and the fact that
complexities of RT DC programs are far greater
than those of single-node programs, thepractice of
relying solely on testing for reliability assurance is
becoming less and less tolerable.

Whether we like it or not, there are certain
hard deadlines in human societies and violation of
these deadlines have severe consequences, For
example, suppose cars are to be driven by
automated drivers (robots). If such cars are
heading foward a collision course, then the

collision can be avoided only if at least one driver

detects the danger and takes an avoidance action
within a certain hard deadline. Applications
subject to hard deadlines are called hard-real-time
(HRT) applications. Again, the timely service
capabilities of such HRT application systems
cannot be sufficiently assured by the testing
approach alone.

A new-generation RT distributed software
engineering method must thus allow some system
engineers dealing with safety-critical applications
to confidently produce certifiable RT distributed
compuling systems. The general public which has
witnessed conspicuous improvements in the
reliability of the desk-top computer systems in
1990's will demand in this new century a different
level of reliability for the systems in safety-critical
applications, They will demand sufficiently
trustable certifications of the designs and
implementations,

Design-time guaranteeing of service and
response times of computing components /
systems is considered a major fechnological
requirement that must be fulfilled before such
certification becomes a common practice{ 207,
Guaranteeing of service times cannot be done if
application software is structured in undisciplined
manners. That is, easily analyzable structuring of
application software must be pursued to the
maximum extent possible, Research in recent
years has made it clear that high-level structuring
in the form of RT DC objects has significant
advantages in this regard in comparison fo
lower-level  distributed

somewhat process

structuring,
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3. TMO scheme for high-level OC RT
distributed programming

The TMO scheme is a general-style RT
distributed computing (DC) extension of the
pervasive OO design / programming approach [6,
7,15, 21, 22]. 1t has been established to facilitate
RT DC software engineering in a form which
software engineers experienced in the vast
non-RT software field can adapt to with small
efforts.  Calling the TMO scheme a high-level
distributed programming scheme is justified by
the following characteristics of the scheme:

(1) No manipulation of processes and threads:
Concurrency is specified in an abstract form
at the level of object methods, Since
processes and threads are transparent to
TMO programmers, the priorities assigned to
them by the execution engine, if any, are not
visible, either. Yet, TMO offers a powerful
structure which is capable of representing all
conceivable practical RT and non-RT
applications in easy-to-analyze forms.

(2) No manipulation of hardware-dependent
features in programming interactions among
objects: TMO programmers are not burdened
with any direct use of low-level network
protocols, e.g., socketsand any direct
manipulation of physical channels and
physical node addresses / names.

(3) Timing requirements need to be specified only
in the most natural form of a time-window
for execution of every significant output
action, a time-window for every time-

triggered method execution, and a completion

deadline for every client-requested method
execution. This high-level expression matches
the most closely with the designer’s intuitive
understanding of the application’s timing
Tequirements.

At the same time the TMO scheme
wasdesigned to enable a great reduction of the
designer’'s efforts in guaranteeing timely service
capabilities of DCapplication systems. To our
knowledge the TMO scheme is one of the very
few practical RT object programming schemes
that have been formulated from the beginning
with the objective of enabling design-time
guaranteeing of timely actions. The TMO
incorporates several rules for execution of its
components that make the analysis of the
worst-case time behavior of TMOs to be
systematic and relatively easy while not reducing

the programming power in any way [20, 23, 241.

3.1 TMO structure and design paradigms

°
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(Figure 2) The Basic structure of TMO(adapted from[7])
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TMO is a natural and syntactically minor but

semantically  powerful  extension of the
conventional object(s)[6, 7, 15, 21, 22]. As
depicted in (Figure 2), the basic TMO structure
consists of four parts:

ODS-sec = object-data-store secfion: list of
object-data-store segments (ODSS's):

EAC-sec = environment access-capability
section: list of gate objects (to be discussed later)
providing efficient call-paths to remote object
methods, logical communication channels, and 1/0
device interfaces:

SpM-sec = spontaneous-method section: list of

spontaneous methods

SvM-sec = service-method section.

Significant extensions realized by the TMO

scheme are summarized below.

3.1.1 Globally referenced time base

All time references in a TMO are references to
global timein that their meaning and correctness
are unaffected by the location of the TMO[25].
If GPS receivers are incorporated info the TMO
execution engine, then a globally referenced time
base (or global time base, for short) of a
microsecond-level precision can be established
easily. Within a local area network a master-slave
scheme, which involves fime announcements by
the master node and exploitation of the
knowledge on the message delay between the
master node and the slave node, can be used to
establish a global time base of the precision
ranging from a few microseconds to hundreds of
microseconds depending the network interface
components and the clock synchronization

software used. Over a wide-area network where

GPS receivers are not universally available, a
master-slave scheme can be used to establish a
global time base of a sub-millisecond level
precision. A TMO instantiation instruction may
contain a parameter which explicitly indicates the
required precision of the global time base fo be
established by the TMO execution engine,

3.1.2 Distributed computing component

TMO's distributed over multiple nodes may
interact via remote method calls. To maximize the
concurrency in execution of client methods in one
node and server methods in the same node or
different nodes, client methods are allowed to
make non-blockingtypes of service requests to

server methods.

31.3 Spontaneous method(SpM) and its clear
separation from the service method
The TMO may contain a new type of methods,

spontaneous methods (SpM's) (also called
time-triggered methods or TT methods), which
are clearly separated from the conventional
service methods (SvM’s). The SpM executions
are friggered upon reaching of the RT clock at
specific values defermined at the design time
whereas the SvM executions are triggered by
service request messages from clients, Moreover,
actions to be taken at real times which can be
determined at the design fime can appear only in
SpM’s, Triggering times for SpMs must be fully
specified as constants during the design time.
Those RT constants appear in the first clause of
an SpM specification called the autonomous
activation condition (AAC) section. An example
of an AACis “for t = from 10am to 10:50am

every 30min start-during (t, t+5min) finish-by
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t+10min”.

A provision is also made for making the AAC
section of an SpM contain only candidate
triggering times, not actual ftriggering times, so
that a subset of the candidate triggering times
indicated in the AAC section may be dynamically
chosen for actual triggering. Such a dynamic
selection occurs when an SvM or SpM within the
same TMO makes a reservation for future
executions of a specific SpM.

A TMO which contains an SpM can also be

viewed as an autonomous active DC component,

3.1.4 Basic concurrency constraint (BCC):

This rule prevents potential conflicts between
SpM's and SvM's and reduces the designer's
efforts in guaranteeing timely service capabilities
of TMO's. The full set of data members in a
TMO is called an object data store(ODS). An
ODS is declared as a list of ODS segments
(ODSS's). each of which is thus a subset of the
data members in the ODS and is accessed by
concurrently running object method executions in
the concurrently-reading and exclusive-writing
mode. Basically, activation of an SvM triggered
by a message from an external client is allowed
only when potentially conflicting SpM executions
are not in place. An SvM is allowed to execute
only if no SpM that accesses the same ODSS’s to
be accessed by this SvM has an execution
time-window that will overlap with the execution
time-window of this SvM. The BCC does not
reduce the programming power of TMO in any

way.

3.1.5 Guaranteed completion time(GCT) and deadline
for result arrival

T T Domcin of T
Ciiznt Oifust communication SErvor ol
Object Datastgre] MM osiuciure Object Data Stote

—
Cucarenteed Completion Time
(GCT) advertised
togsther with MIR

Decdline for Result
Arrivd] (DRA)
imposed byClient

{Figure 3) Client's deadline vs. Server's GCT with
maximum invocation rate (adapted from [21))

Deadlines are handled in the most general form
[21, 24]. Basically, for output actions and
completion of a method of a TMO, the designer
guaranfees and advertises execution time-
windows boundedby start times and completion
times. By advertising these time-window
specifications to the designers of potential client
objects, the designer of the server TMO
guarantees the timely services of the TMO.,
Before determining the time-window
specifications, the server object designer must
make sure that with the available object execution
engine (hardware +OS) the server object can be
implemented such that the oufput actions are
performed within the time-windows. The BCC
contributes to major reduction of these burdens
imposed on the designer.

On the other hand, the client imposes a
deadline for result arrival(DRA) as depicted in
(Figure 3). The client object in the middle of
executing its method, Method 2, calls for a
service, Method 7 service, from the server object.
In order to complete its execution of Method 2
within a certain target amount of time, the client

must obtain the service result from the server
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within a certain deadline. During the design of
this client object, the designer searches fora server
object with a GCT acceptable to him/her. The
designer must also consider the time to be
consumed by the communication infrastructure in
judging the acceptability of the GCT of a
candidate server object.

There are three sources from which a faultmay
arise to cause a client’s deadline to be violated.
They are (s1) the client object’s resources which
are basically node facility (hardware + OS), (s2)
the communication infrastructure, and (s3) the
server object’s resources which include not only
node facility but also the object code. Thus while
the server is responsible fo finish a service within
the guaranteed service time, the client is
responsible for checking if the result comes back
within the client’s deadline or it does not due to
a fault. This support for programmers to specify
a DRA in association with a remote method call
enables “sysfematic composition” of higher-level
services with timeliness assurances out of
lower-level services.

Middleware which together with node OS’s and
hardware make up TMO execution engines, have
been developed [26-28]. These and other
middleware supporting OO RT programs will be

discussed in Section 4.

3.2 TMO structuring in environment modeling and
multi-step multi-level design and implementation

The attractive basic design style facilitated by
the TMO structuring is to produce a network of
TMOs meeting the application requirements in a

top-down multi-step fashion[7, 23]. The

engineering of an application system can start
with a single TMO representation of the entire
application environment (including the computer
system to be designed) and proceeds through
step-by-step expansion of the initial single TMO
model toward a final implementation in the form
of a network of TMO's executing on engines.
This top-down process can also produce a RT
simulator of the application environment, again in
the form of a TMO network. In fact, the TMO
scheme facilitates an attractively simple approach
to parallel and distributed RT simulation, called
the distributed time-triggered simulation (DTS)
[1, 7. 29, 30, 31]. This systematic approach has
been shown to be practical via several
experiments which dealt with RT DC applications
such as a missile defense command-control
application [7] and a freeway car traffic control
application[29, 31].

4. Middleware supporting TMO-structured
programs

We have been enabling TMO programming
without creating any new language or compiler.
A cost-effective way to support execution of OO
RT distributed programs is to realize an execution
engine by developing middleware running on well
established commercial software / hardware
platforms. To support efficient execution of
TMO-structured  programs, a
architecture, named the TMO Support Middle-
ware(TMOSM), has been developed. TMOSM

can be easily adapted to a variety of commercial

middleware

kernel+hardware  platforms compliant  with
industry  standards[27, 28]. TMOSM uses
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well-established services of commercial OSs, e.g.,
process and thread support services, short-term
scheduling services, and low-level communication
protocols, In a manner ftransparent to the
TMOSM

architecture was devised to contribute to

application programmer, The
simplifying the analysis of the execution {ime
behavior of application TMOs running on
TMOSM,

TMOSM has been foundto be easily adaptable
to most commercial hardware + kernel platforms,
e.g.. PCs or similar hardware with Windows XP,
Windows CE., Linux, etc. A prototype
implementation on Windows XP/2000/NT,
TMOSM/XP(initially =~ TMOSM/NT),  was
developed[27]. Our experiences indicate that even
this middleware extension of a general-purpose
OS (Windows XP) can support application
actions with the 10ms-level timing accuracy.
TMOES/AnyORB/NT [28] is another prototype
implementation realized in the form of a CORBA
service that runs on platforms equipped with
Windows NT and an ORB (object request broker)
and supports CORBA-compliant  application
TMOs.

A Windows CE based prototype of TMOSM
has also been developed and under continuous
optimization with the goal of supporting
application actions with better-than-10ms-level
timing accuracy. It has been used in supporting a
few advanced applications, e.g., control software
for autonomous ground vehicles, a music ensemble
performed by networked musical PCs, each
making a unique contribution to a stereo music

play, etc. Such application demonstrations are

expected to grow at a faster rate from here on.
In  addition, two Linux-based prototype
implementation of TMOSM have been developed.
The first one was developed by the second
co-author and his collaborators in Korea a few
years ago[32] and the second one was developed
at the first co-author's location recently. A joint
effort by both teams for establishing a unified
Linux-based implementation of TMOSM is under
way.

TMOSM was devised to support the execution
of TMOs with the use of a minimal amount of
computing and communication resources to the
satisfaction of all the timeliness requirement
specifications embedded in TMOs. TMOSM uses
well-established services of commercial OS’s, e.g.,
process and thread support services, short-term
scheduling services, and low-level communication
protocols, In a manner transparent to the
application TMO programmer. While devising the
TMOSM architecture, an emphasis was on
making both the analysis of the worst-case time
behavior of the middleware and the analysis of
the execution time behavior of application TMOs
as easy as possible without incurring any
significant performance drawback., As a result,
use of mechanisms such as semaphore which
leads to frequent blockings of threads inside the
middleware was avoided completely and instead,
a new exfension of the Non-Blocking Writer
mechanism invented by Hermann Kopetz [33].
called  the Buffer(NBB)
mechanism, was used extensively[15, 34].

As depicted in (Figure 4), within TMOSM, the

innermost core is a super-micro thread called the

Non-Blocking
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WTST{Watchdog Timer & Scheduler Thread).
It is a "super-thread” in that it runs at the
highest possible priority level It is also a
“micro-thread” inthat i manages the scheduling
/ activation of all other threads in TMOSM.,
Even those threads created by the node OS kernel
before TMOSM starts are executed only if
WTST allocates some time-slices to them.
Therefore, WTST is in control of the processor
and memory resources with the cooperation of the
node OS kernel,

WTST leases processor and memory resources
to three virtual machines{VMs) in a time-sliced
and periodic manner. Fach VM can be viewed
conceptually as being periodically activated to run
for a time-slice. Each VM is responsible for a
major part of the functions of TMOSM. Each
VM maintains a number of application threads.
In fact, whenever WTST assigns a time-slice fo
a VM. the VM in turn passes the time-slice onto
one of the application threads belonging to itself.
The component in each VM that handles this
“time-slice relay” is the application thread
scheduler. For example, VM-A has the

VM-~-A-Scheduler,
The application thread scheduler is actually
executedoy WTST. To be more precise, at the
beginning of each time-slice, a timer-interrupt
results in WTST being awakened. WTST then
determines which VM should get this new
time-glice. If VM-A is chosen. WTST executes
VM-A-Scheduler and as a result, an application
thread belonging to VM-A is activated to run for

a time-siice as WTST enters into the

application-thread-scheduler

event-waiting mode.

The set of VMs is fixed at the TMOSM start
time. One iteration of the execution of a specified
set of VMs is called a TMOSM cycle.  For
example, one TMOSM cycle may be! VCT
VMAT VAT VMAT. The following three VMs
handie the core functions:

41 VCT (VM for Communication Threads)

The application threads maintained by this VM
are those dedicated to handling the sending and
recelving of middleware messages, Middleware
through  the

messages  are  exchanged

communication network among the middlewar



Time—triggered Message—triggered Object Programming Scheme and Its Support Middlieware 19

instantiations running on different DC nodes to
support interaction among RC DC objects, ie.,
TMOs. Therefore, these application threads are
called communication threads and denoted as CTs
in (Figure 4). A communication thread also
distributes middleware messages coming through
the network to their destination threads, typically

belonging to another VM discussed below.,

4.2 VMAT (VM for Main Application Threads)

The application threads maintained by this VM
are those dedicated to executing methods of
TMOs with maximal exploitation of concurrency.
Those application threads are called main
application threads and denoted as MATs in
(Figure 4). Normallyto each execution of a
method of an application TMO is dedicated a
main application thread. In principle, TMO
method executions may proceed concurrently
whenever there are no data conflicts among the
method executions, Every time-slice not used by
the other VMs is normally given to this VM, In
every one of our prototype implementations of
TMOSM, the application thread scheduler in
VMAT uses a kind of a deadline-driven policy for
choosing a main application thread to receive the

next time-slice [35].

4.3 VAT (VM for Auxiliary Threads)

This VM maintains a pool of threads which are
called auxiliary threads and denoted as ATs in
(Figure 4). Some auxiliary threads are designed
to be devoted to controlling certain peripherals
under orders from TMO methods (executed by

main application threads). Others wait for orders

for executing certain application program-
segments and such orders come from main
application threads in execution of TMO methods,
Use of this VAT has been motivated partly by
the consideration that it should be easier to
analyze the temporal predictability of the
application computations handled by each VM,
Le., those handled by VMAT and those by VAT,
than to analyze the temporal predictability of the
application computations when there is no VAT
and thus VMAT alone handles the combined set
of application computations,

Also, WTST provides the services of checking
for any deadline violations and if a violation is
found, it provides an exception signal to the user.

We believe that structuring of VMSs as periodic
VMs is a fundamentally sound approach which
leads to easier analysis of the worst-cast time
behavior of the middleware without incurring any
significant performance drawback.

A friendly programming interface wrapping the
execution support services of TMOSM has also
been developed and named the TMO Support
Library (TMOSL)[21-23]. It consists of a
number of C++ classes and approximates a
programming language directly supporting TMO
as a basic building-block. The programming
scheme and supporting tools have been used in a
broad range of basic research and application
prototyping projects In a number of research
organizations and also used in an undergraduate
course on RT DC programming at UCI for about
three years [http://dream.eng.uciedu/eceld7/
serious.htm]. TMO facilitates a highly abstract

programming style without compromising the
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degree of confrol over ftiming precisions of

important actions,

44 Other middleware supporting QO RT
distributed programs

OMG has been developing the RT CORBA
specifications in the past few vyears. They
decided to proceed in two steps. First, they
produced the version based on static priorty
assignment[11]. An ORB meeting this
specification has also been produced[9, 36]. This
step has been justified on the grounds that many
current-generation RT programmers who deal
with safety-critical applications and use low-level
programming languages may have easier time
adapting to such styles of programming
distributed objects. However, we feel that static
priority assignment does not match well with RT
DC object programmingl[15, 16, 19]. It defeats the
goal of adopting the high-level OO style into RT
DC programming. Recognizing the limitation of
the first version, OMG started the second step of
developing a specification based on dynamic
scheduling a few years ago[37]. However, this
effort appears to be progressing quite slowly.

In facilitating the TMO programming without
involving a new language tiranslator, it was
necessary to rely on the programmer for
groupingall parameters into a single structured
variable and program the client object to pass a
pointer for the variable along with the information
on the size of the memory area of the variable
onto the execution engine. This restriction is
removed in the CORBA which uses an IDL

(interface definition language) translator[11],

The programmer of a CORBA object class
produces an IDL specification, which contains the
method names and method parameters, in
addition to the class. An IDL translator then takes
the IDL specification as an input and produces
two program-modules, one called the stub for use
by the client objects and the other called the
skeleton for use by the server object. The
stub-skeleton pair takes care of paramefer
transfer across the network and may perform
multiple message exchanges to handle a large set
of parameters.

As mentioned earlier a CORBA service named
TMO execution support (TMOES) that supports
CORBA-compliant application TMOs has been
defined and a prototype implementation, TMOSM
/AnyORB/NT, that runs on platforms equipped
with Windows NT and a basic ORB has been
obtained[28]. Of course, the API wrapping this
TMOES involves the use of IDL and no
restriction on parameter structuring is imposed.,

Efforts for establishing the specification of
distributed RT Java and the support middleware
have been under way for several years [8-10] but
they appear to be moving slowly. It is not clear
exactly when middleware supporting RT DC
objects based on the NET architecturewill appear
but we are certain that we will see some in the
next few years, This is again because the pressure
in industry to find and use new-generation RT
DC programming and software engineering

methods has already grown fo a very serious level.

5. Recent TMO related research works

This section listssome of the recently performed
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and on-going research works related to the TMO

programming scheme to the editors’ knowledge.

(1) TMOSM on Windows CE has been developed
by the first author and his collaborators and
its optimization efforts are continuing. This
toolkit will be made available to the public in
early 2000,

(2) The initial framework of amiddleware
architecture for supporting reliable fault-
tolerant execution of TMO-structured DC
applications, was established several years
ago and it has undergone multiple
enhancement steps since then. This
middleware has been named ROAFTS
(Real-time Object-criented Adaptive Fault
Tolerance Support)[38-40]. Its prototype
implementation is under way.

(3) An attractively simple approach to parallel
and distributed RT simulation, called the
distributed time-triggered simulation(DTS)
[1, 7, 30, 311 scheme, was formulated by the
first co-author ten years ago. It can be
practiced easlly by use of the TMO
programming tools. Efforts for expanding the
scientific foundation for DTS are under way.

(4) The TMO scheme has been proven effective in
developing RT local-area DC application
systems, Efforts for extending the TMO
scheme into a technology for efficient
realization of RT wide~area DC began recently,
especially with a plan for a demo in a tightly
managed optical Grid environment [19].

(5) Linux-based TMO related research has been
conducted by the second co-author and his
collaborators [36].

(6) A sensor network software architecture based on
the TMO structuring principle has been
formulated and a support kernel developed [41].

Besides the activities mentioned above, many
active research works related to the TMO scheme
are under way in research institutions in various
parts of the world. For more information, refer

"hitp://dream. eng.uci.edu/TMO/TMOhIm” or

contact the Software Research Center of the

Konkuk University in Korea.

6. Summary

OO RT programming is a technology expected
to flourish in this quarter of the Zlst century.
Currently, its youthfulness is indicated by the
insufficient availability of the support middleware
and the associated APIL let alone language
compilers. The middleware providing fault-
tolerant execution support is in its infancy. The
advances in OO RT distributed programming will
also enable large-scale RT simulations. The
research community dealing with this technology
area is expected fo grow continuously for
foreseeable future and consequent accelerations of
the technology advances will in turn accelerate
the development of many new types of
sophisticated RT DC applications as well as
realization of advanced types of ubiquitous

computing societies.
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