References
- Wabba, G., 'How to smooth curves and surfaces with splines and cross walidation,' 24th Conf. On the Design Experiments, US Army Research Office, 1997
- Craven, P. and Wahba, G., 'Smoothing noisy data with spline functions,' Numerische Mathematik, Vol.31, pp.377-403, 1979
- Woltring, H., 'A fortran package for generalized cross-validation spline smoothing and differentia-tion', Adv. Eng. Soft, Vol. 8, 104-113, 1986
- Thomas, J. B. and Richard, L. L., 'Stepwise regres-sion is an alternative to splines for fitting noisy data,' J. Biomechanics, Vol. 29, No. 2, pp.235-238, 1996 https://doi.org/10.1016/0021-9290(95)00044-5
- Trujillo, D. M. and Busby, H. R., 'Optimal regular-ization of the inverse heat-conduction problem,; AIAA J. Thermophys. Hear Transfer, Vol.3, No.2, pp.423-427, 1989
- Busby, H. R. and Trujillo, D. M., 'Opitimal regular-ization of an inverse dynamics problem,' Computers & Structures, Vol. 63, No.2, pp.243-248, 1997 https://doi.org/10.1016/S0045-7949(96)00340-9
- Koza, J. R., Genetic programming: On the Program-ming of Computers by Means of Natural Selection, The MIT Press, 1992
- Giannis, G. and Vasilios, B., 'Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives,' J. Biome-chanics, Vol. 30, No.8, pp.851-855, 1997 https://doi.org/10.1016/S0021-9290(97)00043-2
- Giannis, G. and Vasilios, B., 'A comparison of auto-matic filtering techniques applied to biomechanic walking data,' J. Biomechanics, Vol.30, No.8, pp.847-850, 1997 https://doi.org/10.1016/S0021-9290(97)00042-0
- Yeun, Y. S., Lee, K. H. and Yang, Y. S., 'Function approximation by coupling neural networks and genetic programming trees with oblique decision trees,' AI in Engineering, Vol. 13, No.3, 1999
- Yeun, Y. S., Suh, J. C. and Yang, Y. S., 'Function approximation by superimposing genetic programming trees: with applications to engineering problems,' Information Sciences, Vol. 122, Issue 2-4, 2000
- 연윤석, '가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용,' 한국DAD/CAM학회논문집, Vol. 3, No.1, pp. 57-67, 1998
- Hansen, P. C; 'Analysis of discrete III-Posed problems by means of the L-Curve,' SIAM Rev., Vol. 34, pp. 561-580, 1992
- Hansen P. C. and O'Leary, D. P., 'The use of the L-Curve in the regularization of discrete III-Posed problems,' SIAM J. Sci. Stat. Comput., Vol. 14, pp. 1487-1503, 1993
- Peter, R. J, and Ramesh, M. G., 'A new method for regularization parameter determination in the inverse problem of electrocardiography', IEEE Trans. Biomedical Engineering, Vol. 44, No.1, pp. 19-39, 1997 https://doi.org/10.1109/10.553710
- Colli-Franzone, P., Guerri, L., Taccardi, B. and Viganotti, C., 'Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data,' Calcolo, Vol. XXII, No. 1, 1985
- Yeun, Y. S., Lee, K. H., Han, S. M. and Yang, Y. S., 'Smooth fitting with a method for determining the regularization parameter under the genetic programming algorithm,' Information Sciences, Vol. 133, pp.175-194, 2001
- http://www.netlib.org/gcv/
- http://octave.sourceforge.net/index/f/gcvspl.html