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METRICAL AND TOPOLOGICAL PRESSURE
OF FLOWS WITHOUT FIXED POINTS

LiANFA HE, FENGHONG YANG AND YINGHUI GAO

ABSTRACT. We study the metrical and topological pressure for
flows without fixed points on a compact metric space, and get the
results as follows: (1) The metrical pressure with respect to an er-
godic measure can be defined by (¢, £)-spanning sets. (2) The topo-
logical pressure is the supremum of metrical pressures with respect
to all ergodic measures. (3) The properties that the topological
pressure is zero, nonzero, finite or infinite respectively are invariant
under weak equivalence.

1. Introduction

Let (X,d) be a compact metric space with the metric d, and ¢ :
R x X — X be a continuous flow(flow for short). Write ¢; for the
homeomorphism of X defined by ¢i(z) = ¢(t,z). Define B to be the
o-algebra of Borel subsets of X. Let ® represent ¢ or ;. The set
of all ®-invariant probability measures on (X, B) is denoted by M (®).
Put E(®) = {u € M(®)|p is ergodic for ®}. C(X, R) denotes the Ba-
nach space of real-valued continuous functions on X equipped with the
supremum norm. For m € M(y) and f € C(X, R) we define

P, 1) = hum(0) + / fdm,

where A, (1) is the metrical entropy of ¢; (with respect to m).
Pr(p, f) is called to be the metrical pressure of ¢ with respect to f
and m.
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For F,E C X we say F (t,¢)-spans E (with respect to ¢), if for each
z € E there is a y € F such that

d(ps(z), ps(y)) < &, Vs € [0,t].

Topological pressure for a flow ¢ with respect to f is defined by Bowen
in [1]. It is that

1
P(p, f) = ii_i%liﬁﬁi‘.}pzlog P(op, f,&,t),

where P(yp, f,&,t) = inf{}" pexp fg fows(x)ds|F (t,e)—spans X}. In
particular, if f = 0, then P(¢p,0) is just the topological entropy for .

Given ¢ and v flows on X and Y respectively, we say ¢ and ¢ are
weakly equivalent if there is a homeomorphism A of X onto Y such that
pand ¢ = {$s = Atoyyo ) :t € R} have the same orbits ([6]).
We know from [9] that, for continuous maps on compact spaces, both
topological entropy and topological pressure are invariant under conju-
gacy. However, this does not hold for mutually weakly equivalent flows
in general. In [6], Ohno proved that the properties that the topological
entropy is zero, positive, finite or infinite respectively are invariant under
weak equivalence for flows without fixed points (Theorem 1 in [6]). He
showed also that this is not case if the flows have fixed points ( Theorem
2 in {6]). ‘

This paper is a further attempt to approach some problems of met-
rical and topological pressure for any flows without fixed points. In
section 2, we shall give an equivalent definition of metrical pressure for
an ergodic y-invariant measure by (¢, €)-spanning sets (Theorem 1). In
section 3, we shall prove that the topological pressure is the supremum of
metrical pressures with respect to all ergodic ¢-invariant measures (The-
orem 2). In Section 4, we shall extend Theorem 1 in [6] to topological
pressure (Theorem 3). ’

2. Metrical pressure of flows with respect to ergodic mea-
sures ’

In [3], Katok gave an equivalent definition of metrical entropy of a
homeomorphism with respect to an ergodic invariant measure by (n, €)-
spanning sets. The following adopts the Katok’s ideas.
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For m € E(p),f € C(X,R) and § € (0,1). Put

Qmlp, f,e,t,6) = inf{z exp /Ot fops(x)ds|F is a (t,¢€)

z€F
-spanning set of a set of m-measure
>1-46},
) 1
Qm(SO, f, €, 6) = th\lp " IOg Qm(‘w‘% fa g,t, 6)7
t——+o00 t
ad  Qulef) = ImQu(p fie)

REMARK 1.

1. Theorem 1 we shall prove shows that the limit exists and is inde-
pendent of 4.
2. For any c € R,

Qm(‘P: f+ C) = Qm((,O,f) +c.

THEOREM 1. Let ¢ be a flow without fixed points on X. For m €
E(yp) and f € C(X, R), we have

Qmle ) = hmlpr) + / fdm
= Pm(ﬂo’f)'

Let g : X — X be a continuous map, and £ a finite measurable
partition of (X, B). Put

r=¢evg eV vg ™ Ye yn>1

For z € X, let A,(x) denote the member of the partition {™ to which
belongs.

LEMMA 1.[4 (Shannon-McMillan-Breiman Theorem) For p € M(g)
and any finite measurable partition £ of (X, B), there is a y-integrable
function, denoted by p¢, such that

(1), Jim_(~ log p(An())) = pels) ac.,

@/%@W=M@&

where h,(g,&) is the entropy of g with respect to §.
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LEMMA 2. For a small constant r > 0, let
Anr(§) = {An € 8|u(An) <exp(—n(hu(g,€) — 1))},
Ser® = U 4w
An€AL - (£)
then for some § > 0, there is N satisfying
p(Sy . (£)) > 6, forn > N.

Proof. Write Xo = Supp(u), then u(Xo) = 1. For r > 0, we set X,
= {y € Xolue(y) > hu(g,€) — 5} Clearly, u(X;) > 0. Put pu(X,) = 24.
By Egoroff Theorem ([5]), there exists a measurable set B € B such that
#(B) > 1 -6, and the sequence {—3 log u(An(z))} converges uniformly
to pe(x) on B. Therefore, for § > 0 there is IV such that

—%logu(An(w)) > pe(z) — g

for every x € B and n > N. Notice that u(B[X,) > 4, so for any
y € B\ X, and n > N, we have

~ 0B (A0 (y)) > (o) — £ > hu(,) = 7,

ie.
p(An(y)) < exp(—n(hu(g,€) —1)).
S0 (An(y)) € Az, (€), and thus
w(Sr,(8)) > u(B() X:) > 6.
Now the proof of the lemma is complete.

Similar to the proof of Lemma 2, we can get the following
LEMMA 3. For a small constant r > 0, let
A (€)= {An € €M u(An) > exp(—n(hu(g,€) + 7))},
S0 = U 4
An€AT (€)
then there exist some § > 0 and N satisfying
M(S;:r(ﬁ)) > 28, forn > N.

Proof of Theorem 1, we give the proof in two steps.
Step 1. Qm(, f) < hm(p1) + [ fdm.



Metrical and topological pressure of flows without fixed points 1091

For any o < 0, take € > 0 such that if d(z,y) < ¢ then

(1) d(s(z), s(y)) <o, Vs €[0,1],
for all z,y € X.

Since m € E(y), it is easy to check m € M(p;) and is non-atomic.
Take a finite partition £ of X such that diam(§) < §. By Lemma 3, for
r > 0 there are n > 0 and N such that
(2) #(Snr(€)) > 21, forn > N.

It follows from m € E(p) that

t—>+oot/ fows(x) ds_/fdm a.e..

Let gn(z) = 1 fo fogs(z)ds, then g, — [ fdm a.e.. By Egoroff Theo-
rem, for n > 0 there is a measurable set B such that m(B) > 1—n, and

{gn} converges uniformly to [ fdm on B. Obviously % fot f o ps(z)ds

also converges uniformly to | fdm on B, and m(E, := B[S/ ,.(¢)) >
n:=1-4Yn>N.
Let

. 1
Qm(()oa f:aa 6) = .hm —IOng(QD, f,O',tj,(S).

We can put {t;} satisfying

1 t
3) IZ/ fosos(w)ds—/fdm| < %, Vz € B, t > t;.
0

Write n; = t; + 55,0 < s; < 1. Let Fy; be an (n;,¢)-spanning set with
the smallest cardinality of E,, := B[ S;:j’,(g ) with respect to ¢, then
Fp; is a (tj,0)-spanning set of Ep; for . For any A,; € £, we have
diam(An;) < €. So there is at most one element of Fy,; in A,;, and
therefore

(4) Card(Fy;) < exp(n;(hm(¢1,£) +7)).
By (3) and (4), we have

Qs £,0,11,6) < exp(n(hm(o1,€) + ) + s / fdm + %)).
Hence

Q0. £,0,6) < hm(on, &) +7+ / fdm

< hm(¢1)+r+/fdm.
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Let r — 0 and then o — 0, we get

Qm(w, f) < hmlp1) +/fdm.

Step 2. Put
o]
am(p, fre,0) = liminf - logQm(e, f,€,¢,9),
and qm(QD;f) = gl_{%qm(goafveaé)

We shall prove gm (¢, f) > hm (1) + [ fdm.
Let £ = {A1,Aq,..., A, Ax+1} be a finite partition of (X, B) such
that

1. Ay, As,..., A are pairwise disjoint and closed,
k
2. Apa=X\|J A
i=1

The inequality is a consequence of the following claim.
Claim. For any r > 0 and any partition ¢ satisfying the properties
1.-2. above, it follows that

(5) F 4 G, £) 2 (01, ) + / fdm.

In order to prove the claim, we choose a positive integer L so that
%logG < r, and let
_ —(n—1
g =evplev v e

Take a small constant a > 0, by Lemma 2, there are § > 0 and N
such that

(6) m(S,4(§)) > 46, forn > N.
Since
o] o]
(7) ltlgl_:g E‘ IOg Q’m((p, .f7 g, t> 6) - lrgl’_)lil;.lof E IOg Qm(% f7 €, TlL, 6):

it is enough to prove the claim for t = nL.
For any o > 0, take 0 < € < o such that if d(z,y) < € then

(8) -~ |fews(z) = Fows(y)l <o,
for any z,y € X and any s € [0,1].

Let F; ; be an (nL, ¢)-spanning set of E of m-measure greater than
or equal to 1 — & with respect to ¢, then it is an (n,e)-spanning set of
E for LL-
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For § > 0 and a set B given by Egoroff Theorem, i.e. m(B) > 1 -9

and fg’f o @s(x)ds converges uniformly to [ fdm (¢t — +o0) on B, let
E,; := B[ E, then

(9) m(Epp) > 1 — 24

Let F,; C F,; be an (nL,¢)-spanning set with the smallest cardinality
of E,r for ¢. Let N(1 — 4,p,¢,nL) be the smallest cardinality of any
(nL, e)-spanning set of a set of m-measure greater than or equal to 1 — 4
with respect to ¢. Clearly

(10) N1 —=6,p,e,nL) > N(1 —26,¢p,e,nL).
It follows from the proof of Theorem 5 in [7] that

6"Card(F, ;) > 6"Card(F,r)
(11) > 6"N(1—20,p,e,nL)
> 26 exp(n(hm(pr,§) —a)).

Choose x,1, € F,1, satisfying

nL nL
(12) /0 fops(znr)ds = min{/0 fops(x)ds|r € For},

and notice that the cardinality of F,; C F,/L 1, is the smallest, so there is
Ynr € By such that

(13) d(s(Tnr), ¢s(Ynr)) < &, Vs € [0,nL].
By (8) and (11)-(13), we get

nL
6" Z exp/0 fops(z)ds

xEFTILL

nL
> 2exp(nlin(en€) =a)+ [ foeu(uni)ds —nLo).

Take {n;} such that

1 [t 1

|— fops(x)ds — /fdm| < -, Yz €B.
"5 Jo . J

and

. 1
am(p, f,€,8) = ljlin;g L log Qm (v, f,&,n;L, d).
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Therefore
6" 3 exp / fopu(a)ds > 26exp(n;(hm(or,€) - a
man L
L
+L/fdm— 5 Lol
and then
Qi 2 L,8) 2 2explny(hm(ior,) —a+ L [ fim
L
~Z _ Lo)).
; )
Thus

F1086+ n(i £,6,0) 2 Fhnpr,&) = a) + [ fdm—o.

Let 0 — 0(so £ — 0), we get

gm(p, f)+712> 2(h (vr,€ /fdm

Notice that £ and a are arbitrary and h.,, (1) = Lhn (1), therefore

g, f) +7 > hn(e1) +/fdm.

Now the proof of the theorem is complete. 1
COROLLARY 1. For any m € E(p),r € R\{0} and f € C(X, R),

Plio, f) = ﬁhmw 4 / fdm.

3. The variational principle of topological pressures

For a given flow ¢ on X and f € C(X, R), we have known from [1]
and the variational principle of topological pressure of continuous maps
[9] that

P((P,f) = P(Solafl)v

sup{hm(p1) + [ fdm|m € M(p1)},
sup{hm(p1) + [ fdm|m € E(p1)},

= sup{hm(p1) + [ fdm|m € M(p)},

(14)
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where f1(z) = fol fops(x)ds, and P(yy, f1) is the topological pressure
of ¢; with respect to f;.

Since there exist significant non-parallel gradients between ¢ and 1,
for instance, a @j-invariant measure is not @p-invariant in general, and
an ergodic measure for ¢ is not necessary ergodic for 1, it is reasonable
to give the following.

THEOREM 2. Let ¢ be a flow without fixed points on X. For any
f € C(X,R), we have

P, f) = sup{hm(pr) + / fdmlm € E(p)}.

Proof. It follows from (14) and E(p) C M(p) C M(p1) that

sup{hm(i01) + / fdmim € E(9)} < P(p, f).

To prove the converse inequality, it is enough to prove

sup{hm (1) +/fdmlm € E(p)}

> sup{hm(p1) + / fdmim € B(g1)}.

For each € E(¢1) and t € R, we define
(15) p(B) = p{¢e(B)), for B € B;

1
(16) m(B) :/ we(B)dt, for B € B.
0

It is easily seen that u; € E(p1) and m € E(yp).
Let Supp(pt)(resp. Supp(m)) denote the support set of u:(resp. m).
By (15) and ¢; : X — X is a homeomorphism, one can easily show

(17) @t(Supp(ut)) = Supp(p),
and
Supp(m) = |_J Supp().
te(0,1]

For 6 € (0,1) and E,, C Supp(m) whose m-measure is greater than
or equal to 1 — 4, suppose Fy, is a (t,¢)-spanning set of E,, for ¢. Put
t = n + s, where n is a positive integer and s € [0,1). It is easily seen
from the equality (16) that there is tg € [0, 1] such that p, (E,,) > 1—46.
Put E(ty) = Em()Supp(pit,), then u(E(tg)) > 1 — 6. We can see
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from the equality (17) that o (E(to)) C Supp(u) and p(pt, (E(to))) =
tto (E(tg)) > 1 — 6. Write Eg = ¢1,(E(to))-

Since Fy, is a (t,¢)-spanning set of E,, with respect to ¢, Fy :=
¢t (Frm) is an (n — 1, €)-spanning set of Ey for ;. By Remark 1, we can
assume that f > 0. Therefore

Y ex /tfo (w)ds > ¥ /n_lf (2)d
PO Ps s 2 expo pslz)ds

z€Fm zeFy
n—2
= D exp) fopi(s)
z€F, i=0

Z P,:(Solafl)ean— l)a

where P}(p1, fi,e,n —1) =inf{}_ pexp Sy fio @i (z)|F is a (t,¢e)-
spanning set of a set of y-measure > 1 — § with respect to @1} (see

[2])-

Since E,, is arbitrary, we have

Qm(% f’sat’é) > P;(Sol,flv‘fan - 1)
It follows from Theorem 2.1 in [2] and Theorem 1 that

M@O+/NmZMWﬂ+/MM
This proves

sup{Pm (1, f)Im € E(p)} 2 sup{Pm(p1, f)im € E(p1)}.
Now the proof of the theorem is complete. O

4. Topological pressures of mutually weakly equivalent flows

THEOREM 3. Let ¢ and ¢ be flows on compact metric spaces X and
Y respectively. If ¢ and v are weakly equivalent and they have no fixed
points, then we have
P((p’f) = C(p’lﬁp(d)’f ° A_l)a for f € C(X’ R)7
where Cy, is a constant, and X is the homeomorphism in the definition
of weak equivalence.

Proof. Let ¢ = {4 = A loey o) :t € R}. It is trivial from the
definition of weak equivalence that

P(Qb’f) = P(wvfo/\—l), for f € C(X,R)
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It is enough to prove that there exists a constant Cyy such that

P(@)f) = C<P’¢P(¢7f)) for f € C(X’R)

By Theorem 2, we have

P(¢, ) = sup{hm(ip1) + / fdmim € E(p)},
and
P($, ) = sup{hun(¢1) + / fdinlin € B(@)}.

In addition, we get from Definition 2.2 in [8] and Proposition 1 in [6]
that there exist continuous functions #: X x R » Rand§: Y xR — R
such that for each m € E(yp),

(18)

1 6(1,z)
/fdm = m /(/0 fo gbs(m)ds)dm, for f € C(X,R),

defines an m € E(@), the map A : E(p) — E(§),m — 1 is bijective,
and the inverse map A™! : E(9) — E(yp), ™ — m is defined by
(19)
1 é(l,x)
dm=—:——-// o ps(x)ds)dm, for f € C(X,R).
[ tim=rimmm [, fow@isim, for f 00K, R)
It follows from [6] that

ha(p1) = mhm(%)-

Therefore
1 R 1
(20) th(‘Pl) < ha(f1) < Ehm(Sol),

where A = max{0(1,z)|z € X},a = min{6(1,z)|r € X}. It is easily
checked by (18) and (19) that

(21) Cy / fdm < / fdi < Cy / fdm

where C; = §,B = max{6(1,y)|y € Y}, b = min{f(1,y)|ly € Y}, and
Co=4%.
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Combining (20) with (21), we have that there exist constants D; and
D, satisfying

Daltmlipr) + [ fdm) < hagn) + [ fam

It follows that
DlP((P,f) S P(@)f) S DQP((P,f),

and so there is a constant CLP,/, such that

P((Paf) = C¢¢P(¢7f)3 fOI‘ f S C(X7R)
Now the proof of the theorem is complete. 4

COROLLARY 2. 8 If f = 0 then h(p) = Cpyh ().
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