References
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203 (2001).
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 Springer-Verlag, Berlin-Heidelberg-New-York (1976).
- D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geom. Topol. 509 (1989), 15–30, World Scientific, Singapore.
- E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448.
- J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasg. Math. J. 45 (2003), 475–492. https://doi.org/10.1017/S0017089503001393
- P. Dombroski, On the geometry of tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88.
- A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280. https://doi.org/10.1007/BF00151525
- O. Kowalski, Curvature of the induced Riemannian metric of tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124–129. https://doi.org/10.1515/crll.1971.250.124
- Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. 21 (1969), 117–143. https://doi.org/10.2748/tmj/1178243040
- K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc. (1973).
- K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3 World Scientific Publ. Co., Singapore, 1984.