DOI QR코드

DOI QR Code

THE UNIT TANGENT SPHERE BUNDLE OF A COMPLEX SPACE FORM

  • Cho, Jong-Taek (Dedicated to Professor K. Sekigawa on the occasion of his sixtieth birthday) ;
  • Chun, Sun-Hyang (Dedicated to Professor K. Sekigawa on the occasion of his sixtieth birthday)
  • Published : 2004.11.01

Abstract

In this paper, we study the unit tangent sphere bundles T$_1$M(4c) of complex space forms M(4c) with constant holomorphic sectional curvature 4c. In particular, we determine T$_1$M(4c) whose Ricci tensors satisfy the Einstein-like conditions.

Keywords

References

  1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203 (2001).
  2. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 Springer-Verlag, Berlin-Heidelberg-New-York (1976).
  3. D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geom. Topol. 509 (1989), 15–30, World Scientific, Singapore.
  4. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448.
  5. J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasg. Math. J. 45 (2003), 475–492. https://doi.org/10.1017/S0017089503001393
  6. P. Dombroski, On the geometry of tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88.
  7. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280. https://doi.org/10.1007/BF00151525
  8. O. Kowalski, Curvature of the induced Riemannian metric of tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124–129. https://doi.org/10.1515/crll.1971.250.124
  9. Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. 21 (1969), 117–143. https://doi.org/10.2748/tmj/1178243040
  10. K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc. (1973).
  11. K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3 World Scientific Publ. Co., Singapore, 1984.