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REIDEMEISTER ORBIT SETS
ON THE MAPPING TORUS

SEOUNG HO LEE

ABSTRACT. The Reidemeister orbit set plays a crucial role in the
Nielsen type theory of periodic orbits, much as the Reidemeister
set does in Nielsen fixed point theory. Let f : G — G be an endo-
morphism between the fundamental group of the mapping torus.
Extending Jiang and Ferrario’s works on Reidemeister sets, we ob-
tain algebraic results such as addition formulae for Reidemeister
orbit sets of f relative to Reidemeister sets on suspension groups.
In particular, if f is an automorphism, an similar formula for Reide-
meister orbit sets of f relative to Reidemeister sets on given groups
is also proved.

0. Introduction

Nielsen fixed point theory has been extended to Nielsen type the-
ory of periodic orbits [4, Section IIL.3]. In the fixed point theory, the
computation of the Nielsen number often relies on our knowledge of the
Reidemeister set, that is the set of Reidemeister conjugacy classes in the
fundamental group. Ferrario [2] made an algebraic study of the Reide-
meister set in relation to an invariant normal subgroup. He obtained
addition formulae for Reidemeister numbers. Recently we extended his
work on Reidemeister sets and obtained similar formulae for Reidemeis-
ter orbit numbers in [6]. Jiang [5] made a geometric study of the relation
between periodic orbits and conjugacy classes in the suspension groups.
Our purpose in this paper is the alternating approach on the mapping
torus to obtain addition formulae for Reidemeister orbit numbers.

Given a group endomorphism f : G — G, the Reidemeister set of
f, denoted by R(f), is the set of orbits of the left action of G on G
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via v gvf(g~1), and its cardinality is the Reidemeister number R(f)
of f. When f is the homomorphism induced by a map X — X on
the fundamental group m1(X), R(f) is an upper bound for the Nielsen
number N(f), N(f) is usually the minimal number of fixed points in
the homotopy class of that map.

For a given integer n > 0, f acts on the Reidemeister set R(f™) of the
n-th iterate f™. An orbit of this action is called a Reidemeister orbit, the
set of all such orbits is the Reidemeister orbit set RO™ (f) introduced in
[6]. When f is the homomorphism induced by a map X — X on m;(X),
its cardinality ﬁRO(")( f) is an upper bound for the number of essential
n-orbits, the latter being a lower bound for the number of n-orbits in
the homotopy class.

Now let f : G — G be an endomorphism between the fundamental
group of the mapping torus, and H C G be an f-invariant normal sub-

group and G = G/H. The short exact sequence 1 - H 5 G — G — 1
induces an exact sequence

l—»ﬁ—i»éf—»éfﬁl,

of extended suspension groups. Under certain conditions, we have an
addition formula of the form

RO ()= Y §R(Gh, 1),
FEROM()

where m; = n/{;,£; being the length of the orbit j, and ‘P;nj,j ‘H—H
is an inner automorphism.

If f: G — @G is an automorphism, then the extended suspension
group G s is an HNN extension of G relative to f (see [7]). In this case
under suitable conditions, we have an addition formula of the form

fROM(f) = Y IR},

JEROM(F)

where zp;- : H — H is a twisted version of the restriction map fg.

This paper consists of three sections. In the first section we describe
some algebraic results in [2] and [6] on the Reidemeister sets and the
Reidemeister orbit sets, while setting up our notation. The second sec-
tion contains our results on extended suspension groups. In the last
section we obtain an addition formula for an automorphism.

For the basics of Nielsen fixed point theory, the reader is referred to
[1] and [4].
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1. Some results on the Reidemeister sets and orbit sets

Let f : G — G be a group endomorphism. The Reidemeister set of
f, denoted by R(f), is the set of equivalence classes for the following
Reidemeister equivalence relation in G: v,v" € G are equivalent if and
only if v/ = gvf(g~?!) for some g € G. The Reidemeister class of vy € G
will be written [y];.

It H C G is an f-invariant normal subgroup, then the short exact
sequence

1—+H—i>Gi>C_¥—>1,

where G = G/H,and i : H — G and ¢ : G — G are the inclusion and
quotient homomorphisms, induces an exact sequence (in the category of
pointed sets)

(R(fm), W) & R, ) S (R(F), [U]5) — 1

of Reidemeister sets, where R(fg) is the Reidemeister set of the restric-
tion map fy : H — H, and R(f) is the Reidemeister set of the induced
map f:G — G.

The function i, is not injective in general. In a paper of Davide
Ferrario 2], an f-invariant normal subgroup T#(K) in H is identified
so that under certain conditions, the image ©.R(fr) is in one-to-one
correspondence with the Reidemeister set R(f;;) of the induced map

Fu : H — H, where H = H/T¢(K).

DEFINITION 1.1 [2]. Suppose K C G is an f-invariant subgroup and
KH = ¢ 'Fix(f). Such a K exists, for example the subgroup ¢~ *Fix(f)
itself. Let [K, H] denote the subgroup of G generated by all khk~1h~!

such that ¥ € K and h € H. Let K¢ denote the smallest normal
subgroup of (¢ containing K. Define

OsK :={kf(k™') | k€ K}.
Define
T¢(K) := [K% HJUO;K
to be the smallest subgroup of G containing both [K¢, H] and O;K.

PROPOSITION 1.2 [2]. The subgroup T¢(K) is normal in H, f-invar-
iant and the equality Tf(K) = {akf(k™') | a € [K®, H],k € K} holds

true.
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LEMMA 1.3 [2]. For any f-invariant subgroup K of G such that

KH = ¢"'Fix(f)

there exists a surjection

A: g (1)) = iR(fa) = R(fu : H — H),

where H = H/Ty(K), and fi : H — H isinduced by fy : H — H. A is
defined by A([Rls) := [p(h)]f;) for all h € H, where p is the projection
p:H— H.

Moreover, A is injective whenever

R(f) =R (F: G/IKS, H] - G/[KC, H)),

where fis induced by f: G — G.

COROLLARY 1.4 [2]. IfFix(f) = {1} then
i : R(fr) — ¢ 1 ([1]7) € R(f)

is a bijection.
How do we deal with ¢;*([a]7) C R(f) for an arbitrary a € G ?

LEMMA 1.5 [2]. For any a € G, let ¢, denote the endomorphism of
G defined by v, (g) := af(g)a"! forallg € G, and let o5 : H — H and
@a : G — G be its restriction and projection respectively. Then there is
a canonical bijection of the Reidemeister sets of p, and f, denoted by

o : R(pa) — R(f), given by a.([gle.) = [9ads-
Moreover, we have a commutative diagram of exact sequences in the
category of pointed sets:

(R(parr) Mpan) —— (R(¢a) [Upa) —E— (R(Ga), [Ups) — 1

o | L&

(R()ledp) —2— R, — 1L

From [6], we introduce our’s results on the Reidemeister orbit sets.
Suppose f : G — G is an endomorphism.
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DEFINITION 1.6 [6]. Let n > 0 be a given integer. Then f acts

on the Reidemeister set R(f") by []s~ A [f(")]fn. The f-orbit of a
Reidemeister class [y]~ will be called a Reidemeister n-orbit, denoted

by [’y]gc"). The set of all such Reidemeister f-orbits will be called the
Reidemeister n-orbit set of f, denoted by RO™(f).

The length of the orbit [’y]gcn) is the smallest integer £ > 0 such that
(v gn = [F4(7)]gn. Clearly £ divides n.

REMARK 1.7 [6]. RO™(f) is the set of equivalence classes in G of
the following equivalence relation: g,¢’ € G are equivalent if and only if

(*) g =vf(g)f*(v"!) forsomei>0andyeG.

Let H C G be an f-invariant normal subgroup. The short exact
sequence

1-HLG5G -1
gives us an exact sequence in the category of pointed sets

(RO™ (f1), (1)) = (RO™(1), (1I§") % (ROW(F), (1] ") — 1

of Reidemeister orbit sets.

The following lemma is very useful for computing Reidemeister orbit
sets.

LEMMA 1.8 [6]. Suppose n > 0 and g € G are given. Suppose
the orbit [g];—") € RO™(f) has length ¢, and let m := n/¢. We have a
commutative diagram of exact sequences in the category of pointed sets:

(ROM(£), 9] 7)) —— (RO™(FY),[g)%)) —— 1

o &

(ROW(f),[g){V) —=—  (RO™(]),[g%) — 1,

where the vertical maps o and & are induced by inclusions, and they are
surjective.
Furthermore, o restricts to a bijection

(m)

o g (g5 — a7 (@)
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2. Alternative approach on the mapping torus

DEFINITION 2.1. Motivated by the fundamental group of the map-
ping torus, we define, for an endomorphism f : G — G, the suspension

group _
Gy :=(G,z | z7'gz = f(g), Vg € G).

Note that when f is an automorphism, G ¢ is a semi-direct product
ZxG.

REMARK 2.2. The natural inclusion ¢ : G — G 7 is not necessarily

injective. Its kernel is U;jsoker(f7). Every elements in Gy can be written
in the form z'¢gz~7 with g € G and 4,5 > 0.

The following fact is taken from the paper [5].

PROPOSITION 2.3. Two Reidemeister classes [g]s» and [¢']f~ in

R(f™) are in the same f-orbit if and only if the elements gz~" and
g'z™™ are conjugate in Gy.
In other words, there is an injection
o™ : ROW(f) = Cre, gl = l9z7)e,
where G fc is the set of conjugacy classes in Gy.
PROOF. It is also directly proved as follows: Suppose [g];n) =[q ];n)

€ RO™(f). By Remark 1.7, there exists v € G and i > 0 such that

n.—1_n

g =Y () =yt Ty,
so we have ¢’z ™ = (yz~ ") (g2~ ") (y27%) L N
On the other hand, suppose that gz~™ and ¢g’2~™ are conjugate in Gy.
Then ¢’27" = (2*6279)(gz"™)(2*62z77)~! for some § € G and 4,5 > 0,
so we get _ o '
S (0™ =272 = fg).
This shows that [g’](f") = [fi(g’)]}n) = [g];n) e ROM(f). O

Now let f : G — G be an endomorphism and H C G be an f-invariant
normal subgroup, as in the previous section. The short exact sequence

1——)H—Z>Gi>é—>1
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induces an exact sequence
185G, 5 Gro1,
where _
Gri=(G,z| 27"z = f(3), Vg € G),
the homomorphism § : G5 — éf is given by ¢(2) = z and G(g) = § =
q(9). The kernel of Gis H = {2’hz=7 | h € H,j > 0}.

REMARK 2.4. (Observation) The natural inclusion H - H is injec-
tive (resp. surjective) if f : G — G is injective (resp. surjective). Hence
H = H is an isomorphism if f: G — G is an automorphism.

Now we will apply the concept of the length of orbits to the mapping
torus. Let f : G — G be an endomorphism. If £|n, then by definition
2.1 the suspension group for f* is

Gro= (G2 | =gz = f4(g), Yg € G).
Applying Proposition 2.3 to the endomorphism f¢, we have

PROPOSITION 2.5. If m = n/{, then there is an injection

o™ : RO(f) = Gee, [0 = [927™)..

PROOF. Suppose [g]gff) = [g’];T) e RO™(f). By Remark 1.7,
there exists v € G and ¢ > 0 such that
g =1V @) () =z ) ey T,
so we have g'z7™ = (yz74) (g2 ™) (y2"%) L.

_ On the other hand, suppose that gz~™ and g’z~™ are conjugate in
Gye. Then

g2 ™ = (2627 (gz™™) (#4627 9) !
=2'6(2z7 g9 (27 ™6 )
=2'6(f) (9)f* (671 )z 2"
for some § € G and 4,5 > 0, so we get
S (9 f"(67Y) = 272" = (F9)'(d).
This shows that [¢]%1” = [(£4)!(¢")]\7 = [g)) € ROM™(54). O
The proposition 2.5 tells us the following:
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PROPOSITION 2.6. Suppose n >0 and g € G are given. If m = n/¢,
then we have a commutative diagram of exact sequences in the category
of pointed sets:

(ROM™(£9),[g)5) —=— (RO™(f%),[g)57) —— 1

a(m)l 1&(’")

(éf“c’ [gz_m]C) — (G'f_fc’ [gz_m]c) — 1,

where the vertical maps are injective. The images of the vertical maps
are the subsets of elements whose z-exponents are —m.
Indeed, we have a bijection

¢ ([@%) - & (7).

PROOF. First we will show that a(™(gy ([g](m))) C G ([gz~™]e)-

Suppose that [y](m) € q; ([g](m)) Then we have [j ] =g ]E’T)’ and

hence . , . o .
7= A @A) = 7e gty
= (727)ge (7T e
for some i > 0 and 4 € G. Therefore g, o a(m)([y]gfz)) = [gz7™]c.

Suppose [2°yz7Y. € §;1([ge™™].) for s,t > 0 and y € G. Then we
have

ngz—t — (zigz——j)(gz—m)(zigz—j)-—l — zig(fﬁ)j(g)zlfl)m(g—l)z—(m+i)

for some 1% ]ZOandéeG Thus s = ¢ t = m+1iand § =
S(fY(8)f(671). So
(W% = 0% = BUY @ F @5 = @%

and
o™ (1) = [z = [2*y2 .

This shows that the restriction map a(™ is surjective. U

A conjugacy class is a Reidemeister class of the identity automor-
phism. By Lemma 1.5 we have
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PROPOSITION 2.7. Suppose n > 0 and g € G are given. Sup-
pose m = n/€ Let ¢mg : Gfe — sz be defined by Pmg * Y
gz Myz™g7, Wy € Gfe and let ¢, .+ H — H and @, g sz — sz

be its restrxctlon and projection respectzvely Then we have a commu-
tative diagram of exact sequences in the category of pointed sets:

(R(@hn,0)s Wy, ) = (R(@img) Wpmg) = (R(Bmag)s Wpm ) — 1
<gz—’">*l l@z—’"n

(Gpeerlgz™™e) =5 (Gpeglgz7™e) — 1,

where the vertical maps are bijections. In particular, the middle one
gives a bijection

(927w : @ (U ) = @ 1 (1527 ™)

Proor. Applying Lemma 1.5 to the identity automorphism 1x ,
5

G Fe G ¢, then we can easily get the conclusion. 0

Combining Proposition 2.6 and 2.7 we have

COROLLARY 2.8. Supposen > 0 and g € G are given. Suppose m =
n/L. Let pm,g: Gy — Gye be as before. Then we have a commutative
diagram of exact sequences in the category of pointed sets:

(ROM™)(£9),[g)37) <= (ROW(F9), [ 5)) — 1

Blm) l [ Bm)

R(@ng) [Ugr, ) = R@mg) Wpmy) 22 R@mg) Wpms) — 1,
where the vertical maps are injective, defined by g™ : [x};T) = (297 pmm, -
The images of the vertical maps are the subsets of elements whose z-
exponents are 0.

In particular, we have a bijection

B g7 (@5 = a7 ([Wan,y)-

PROOF. Define B(™) = (gz=™);' 0 (™), then the restriction map is
bijective. O

The results in Section 1 can be applied to the endomorphism ¢y, 4.
We have some additive formulae for Reidemeister orbit sets relative to
the Reidemeister sets on suspension groups.
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THEOREM 2.9. Suppose n > 0 and g € G are given. Suppose the
orbit ["](n) € RO™(f) has length £,, and let my := n/ly. Let @m, g -

G G peg — G ¢o be as in Proposition 2.7. For any ¢m, g-mvanant subgroup
K, of fo such that K,H = ¢ 'Fix(@m, g), let T¢,ng,g(K ) be as in

Propos1t1on 1.2. Then
RO™(f)
> Y R (G B/, (Ke) = BT, ()

5 eROM(f)

and the equality holds if
e~ ~G 4, o~ ~ ~G ey ~
R(‘ng,g) =R (<ng,g : fog/[Kg e , H] — fog/[Kg ! ,H])

for all (g ](n) e ROM(f).

PROOF. By Lemma 1.3, for any ¢, 4-invariant subgroup K g of G g
such that

K H = G Fix(@m, 5),

there exists a surjection
Ag: G Wpmy ) = R (Prnyrg t BT, (Bg) = H/ T, ,(Ky))

defined by Ay([R],.., ,) = [pg(h ] e for all h € H, where p, is the pro-

jection py : H— H/T(p (Kg); Ag is injective whenever R(pm, ) =
R(Pm,,g)- Now, R(’)(")(f) is the disjoint union of q;l([g];")) for all
[g]}") € RO™(f). By Lemma 1.8 and Corollary 2.8, there is a surjec-

tion o
Ago ™ oo™ g7 ([)F)) = RiPhn, )

for all [ ) e ROM f), which proves the desired inequality. Moreover,
7

if R(Pmy.g) = R(Brmyrp) for all [g)7 € RO™(f), by Lemma 1.2 the
equality holds. O
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COROLLARY 2.10. If Fix(@m, 5) = {1} for all [g]}") e ROM(f),
then
IROW(f) = Y. 1R(Pm, )
(5" erRO™ ()

Proor. It suffices to define IN{g = {1} for all [g]}”) e ROMW(f). O

3. The case of automorphisms

In view of the observation 2.4, it is instructive to start our analysis
by assuming that f : G — G is an automorphism, so that «: H — H is
bijective and ¢ : G — G is injective. Then we have

PROPOSITION 3.1. Assume that f : G — G is an automorphism.
Suppose m = n/{. Let pp, 4 éfe — éfe be as before. Let ¢y : G — G
be defined by ¥, : y — gf™(y)g™*, Vy € G, and let Yy : H — H and
15 : G — G be its restriction and projection respectively. Then we have

a commutative diagram of exact sequences in the category of pointed
sets:

ix

(RWg) [lyy) = (R®W),[ly,) = (R@),[ly,) — 1

H o =

(R(Phn,g) Mg, ) == (R(pm.g) [Wpm ) L (R(@mg) Woms) — 1,

where the vertical maps are induced by inclusions. Clearly the middle
one gives a surjection

e a (1)) = & (Wey).

Proor. If [y1]y, = [y2]u, for y1,y2 € G, then there exists y € G
such that

Y2 = yy1,(y

)
= yyg(fH™(y g™t
= yy19(z~ "y t2™)g”
= yyl‘ﬂm,g(y_l)~

1
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Thus we have [y1]e,., = [Yole,.., 0 R(Pm,g). This shows that i, is
well-defined. _

On the other hand, since the inclusion map ¢ : H — H is bijective,
we may assume that H is the same as H. If [hi],; = = [ho]y, for
h1,hs € H, then there exists h € H such that

ha = hhygl, o (h™1)
= hhi(gz"™h"t2™g™Y)
= hhaypy(h71).
Thus [h1]y; = [ho]y;. Therefore we have R(ty) = R(¢p 4)- O

Combining Corollary 2.10 and Proposition 3.1 we have

COROLLARY 3.2. Assume that f: G — G is an automorphism. Sup-
posen > 0 and g € G are given. Suppose the orbit [g];—") € R(’)(")(f)
has length £y, and let mg := n/ly. Let om g : Gy, — Gye, be as
in Proposition 2.7. Let 1, be as before. If Fix(¢m,g) = {1} for all
@ € RO™(f), then

IROM(f) = > R

7Y erOM (F)

PROOF. It is also directly proved as follows: Since Fix(@¢m,5) = {1},

we have Fix(1;) = {1}. Then by [3, Theorem 1.8] we have a commuta-
tive diagram of exact sequences in the category of pointed sets:

1= (R M) =5 (RO, [Uy,) 25 (RG),[1g,) — 1

ll o |

L= Ry 0): Wt 15 (RGmgi0)s Momg.) 25 (R(Bmg0); Womg,5) = 1

where the vertical maps are induced by inclusions. In particular, the
middle one gives a bijection from g¢;* (lg,) to Gy 1([1]g,.. -)- By Lemma

4ng,§

1.8 and Corollary 2.8, we get the conclusion |g; 1([§];—"))| = §R(¢) for
all [g]5) € RO™(f). 0

ACKNOWLEDGEMENT. [ should like to thank Professor Boju Jiang
for his helpful guidance.



Reidemeister orbit sets on the mapping torus 757

References

[1] R. F. Brown, The Lefschetz Fized Point Theorem, Scott, Foresman and Co.,
Nlinois, 1971. )

[2] D. Ferrario, Computing Reidemeister classes, Fund. Math. 158 (1998), 1-18.

[3] P. R. Heath, Product formula for Nielsen numbers of fibre maps, Pacific J. Math.
117 (1985), 267-289.

[4] B. Jiang, Lectures on Nielsen Fized Point Theory, vol. 14, Contemp. Math., 1983.

[5] , A characterization of fized point classes, in: Fixed Point Theory and its
applications (R. F. Brown, ed.), Contemp. Math. 72 (1988), 157-160.

[6] B. Jiang, S. H. Lee and M. H. Woo, Reidemeister orbit sets, to appear.

[7] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin-
Heidelberg-New York, 1977.

Department of Mathematics
Mokwon University

Daejeon 302-729, Korea

E-mail: seoungho@mokwon.ac.kr






