A CONVERGENCE THEOREM FOR FEYNMAN'S OPERATIONAL CALCULUS: THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

Byung Moo Ahn* and Choon Ho Lee

ABSTRACT. Feynman's operational calculus for noncommuting operators was studied via measures on the time interval. We investigate that if a sequence of p-tuples of measures converges to another p-tuple of measures, then the corresponding sequence of operational calculi in the time dependent setting converges to the operational calculus determined by the limiting p-tuple of measures.

1. Introduction

Let X be a separable Banach space over the complex numbers and let $\mathcal{L}(X)$ denote the space of bounded linear operators on X. Fix T>0. For $i=1,\cdots,p$ let $A_i:[0,T]\to\mathcal{L}(X)$ be maps that are measurable in the sense that $A_i^{-1}(E)$ is a Borel set in [0,T] for any strong operator open set $E\subset\mathcal{L}(X)$. To each $A_i(\cdot)$ we associate a finite continuous Borel measure μ_i on [0,T] and we require that, for each i,

$$r_i = \int_{[0,T]} ||A_i(s)||_{\mathcal{L}(X)} |\mu_i|(ds) < \infty.$$

Given a positive integer p and p positive numbers r_1, \dots, r_p , let $\mathbb{A}(r_1, \dots, r_p)$ be the space of complex-valued functions of p complex variables $f(z_1, \dots, z_p)$, which are analytic at $(0, \dots, 0)$, and are such that their power series expansion

(1)
$$f(z_1, \dots, z_p) = \sum_{m_1, \dots, m_p = 0}^{\infty} c_{m_1, \dots, m_p} z_1^{m_1} \dots z_p^{m_p}$$

Received February 5, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47A60.

Key words and phrases: Feynman's operational calculus, disentangling.

^{*}This work was supported by Korea Research Foundation Grant (KRF-2001-002-D00035).

converges absolutely, at least on the closed polydisk $|z_1| \le r_1, \dots, |z_p| \le r_p$. Such functions are analytic at least in the open polydisk $|z_1| < r_1, \dots, |z_p| < r_p$.

For $f \in \mathbb{A}(r_1, \dots, r_p)$ given by (1), we let

(2)
$$||f|| = ||f||_{\mathbb{A}(r_1, \dots, r_p)} := \sum_{m_1, \dots, m_p = 0}^{\infty} |c_{m_1, \dots, m_p}| r_1^{m_1} \dots r_p^{m_p}.$$

The function on $\mathbb{A}(r_1,\dots,r_p)$ defined by (2) makes $\mathbb{A}(r_1,\dots,r_p)$ into a commutative Banach algebra [3].

To the algebra $\mathbb{A}(r_1,\dots,r_p)$ we associate a disentangling algebra by replacing the z_i 's with formal commuting objects $(A_i(\cdot),\mu_i)$, $i=1,\dots,p$. Consider the collection $\mathbb{D}((A_1(\cdot),\mu_1),\dots,(A_p(\cdot),\mu_p))$ of all expressions of the form

$$f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$$

$$= \sum_{m_1, \cdots, m_p = 0}^{\infty} c_{m_1, \cdots, m_p} ((A_1(\cdot), \mu_1))^{m_1} \cdots ((A_p(\cdot), \mu_p))^{m_p}$$

where $c_{m_1,\cdots,m_p}\in\mathbb{C}$ for all $m_1,\cdots,m_p=0,1,\cdots$, and

(3)
$$||f((A_{1}(\cdot), \mu_{1}), \cdots, (A_{p}(\cdot), \mu_{p}))||$$

$$= ||f((A_{1}(\cdot), \mu_{1}), \cdots, (A_{p}(\cdot), \mu_{p}))||_{\mathbb{D}((A_{1}(\cdot), \mu_{1}), \cdots, (A_{p}(\cdot), \mu_{p}))}$$

$$:= \sum_{m_{1}, \dots, m_{p}=0}^{\infty} |c_{m_{1}, \dots, m_{p}}| r_{1}^{m_{1}} \cdots r_{p}^{m_{p}} < \infty$$

where
$$r_i = \int_{[0,T]} ||A_i(s)||_{\mathcal{L}(X)} |\mu_i|(ds), \quad i = 1, 2, \dots, p.$$

Rather than using the notation $(A_i(\cdot), \mu_i)$ below, we will often abbreviate to $A_i(\cdot)$, especially when carrying out calculations. We will often write $\mathbb D$ in place of $\mathbb D(A_1(\cdot), \cdots, A_p(\cdot))$ or $\mathbb D((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$.

Adding and scalar multiplying such expressions coordinatewise, we can easily see that $\mathbb{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$ is a vector space and that $||\cdot||_{\mathbb{D}}$ defined by (3) is a norm. The normed linear space $(\mathbb{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)), ||\cdot||_{\mathbb{D}})$ can be identified with the weighted l_1 -space, where the weight at the index (m_1, \cdots, m_p) is $r_1^{m_1} \cdots r_p^{m_p}$. It follows that $\mathbb{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$ is a commutative Banach algebra with identity [7].

We refer to $\mathbb{D}((A_1(\cdot), \mu_1), \dots, (A_p(\cdot), \mu_p))$ as the disentangling algebra associated with the *p*-tuple $((A_1(\cdot), \mu_1), \dots, (A_p(\cdot), \mu_p))$.

For $m=0,1,\cdots$, let S_m denote the set of all permutations of the integers $\{1,\cdots,m\}$, and given $\pi\in S_m$, we let

$$\Delta_m(\pi) = \{ (s_1, \dots, s_m) \in [0, T]^m : 0 < s_{\pi(1)} < \dots < s_{\pi(m)} < T \}.$$

Now for nonnegative integers m_1, \dots, m_p and $m = m_1 + \dots + m_p$, we define

$$C_{i}(s) = \begin{cases} A_{1}(s), & if \ i \in \{1, \cdots, m_{1}\} \\ A_{2}(s), & if \ i \in \{m_{1} + 1, \cdots, m_{1} + m_{2}\} \\ \vdots \\ A_{p}(s), & if \ i \in \{m_{1} + \cdots + m_{p-1} + 1, \cdots, m\} \end{cases}$$

for $i = 1, \dots, m$ and for all $0 \le s \le T$.

DEFINITION 1. Let $P^{m_1,\dots,m_p}(z_1,\dots,z_p)=z_1^{m_1}\dots z_p^{m_p}$. We define the action of the disentangling map on this monomial by

$$T_{\mu_{1},\dots,\mu_{p}}P^{m_{1},\dots,m_{p}}(A_{1}(\cdot),\dots,A_{p}(\cdot))$$

$$=T_{\mu_{1},\dots,\mu_{p}}((A_{1}(\cdot))^{m_{1}}\dots(A_{p}(\cdot))^{m_{p}})$$

$$:=\sum_{\pi\in S_{m}}\int_{\Delta_{m}(\pi)}C_{\pi(m)}(s_{\pi(m)})\dots C_{\pi(1)}(s_{\pi(1)})$$

$$(\mu_{1}^{m_{1}}\times\dots\times\mu_{p}^{m_{p}})(ds_{1},\dots,ds_{m}).$$

Finally for $f \in \mathbb{D}((A_1(\cdot), \mu_1)^{\widetilde{}}, \cdots, (A_p(\cdot), \mu_p)^{\widetilde{}})$ given by

$$f(A_1(\cdot)\tilde{},\cdots,A_p(\cdot)\tilde{}) = \sum_{m_1,\cdots,m_p=0}^{\infty} c_{m_1,\cdots,m_p} (A_1(\cdot)\tilde{})^{m_1} \cdots (A_p(\cdot)\tilde{})^{m_p}$$

we set

$$\mathcal{T}_{\mu_1,\cdots,\mu_p} f(A_1(\cdot),\cdots,A_p(\cdot))$$

$$:= \sum_{m_1,\cdots,m_p=0}^{\infty} c_{m_1,\cdots,m_p} \mathcal{T}_{\mu_1,\cdots,\mu_p} P^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot)).$$

We will often use the alternative notation:

$$P_{\mu_1,\cdots,\mu_p}^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot)) = \mathcal{T}_{\mu_1,\cdots,\mu_p}P^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot))$$
 and

$$f_{\mu_1,\dots,\mu_p}(A_1(\cdot),\dots,A_p(\cdot)) = \mathcal{T}_{\mu_1,\dots,\mu_p}f(A_1(\cdot),\dots,A_p(\cdot)).$$

The following result is Proposition 2.2 of [7].

PROPOSITION 1. The disentangling map $\mathcal{T}_{\mu_1,\dots,\mu_p}$ is a bounded linear operator from $\mathbb{D}((A_1(\cdot),\mu_1),\dots,(A_p(\cdot),\mu_p))$ to $\mathcal{L}(X)$. In fact, $||\mathcal{T}_{\mu_1,\dots,\mu_p}|| \leq 1$.

2. Stability theorem

Let $\{\nu_n\}_{n=1}^{\infty}$ be a sequence of Borel probability measures on [0,T]. We say that ν_n converges weakly to a Borel probability measure ν and write $\nu_n \rightharpoonup \nu$ provided that

$$\int_{[0,T]} b(s) \, \nu_n(ds) \to \int_{[0,T]} b(s) \, \nu(ds)$$

for every bounded continuous function b on [0, T].

PROPOSITION 2. Let $A_i:[0,T]\to \mathcal{L}(X)$ be continuous for each $i=1,2,\cdots,p$. Let $\{\mu_{i,n}\}_{n=1}^{\infty}$ be sequences of continuous Borel probability measures on [0,T] such that $\mu_{i,n}\to\mu_i$ for each i. Then for any nonnegative integers m_1,\cdots,m_p and for any $\phi\in X$

$$\lim_{n \to \infty} P_{\mu_1, \dots, \mu_p, n}^{m_1, \dots, m_p}(A_1(\cdot), \dots, A_p(\cdot)) \phi$$

$$= P_{\mu_1, \dots, \mu_p}^{m_1, \dots, m_p}(A_1(\cdot), \dots, A_p(\cdot)) \phi.$$

PROOF. $\{\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}\}$ is a sequence of continuous probability measures on $[0,T]^m$ since each term in the product is a continuous probability measure. And $[0,T]^m$ is separable. By Theorem 3.2 of [1] $\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p} \rightharpoonup \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}$ since $\mu_{i,n} \rightharpoonup \mu_i$ for each i. For each $\phi \in X$, $C_{\pi(m)}(\cdot) \cdots C_{\pi(1)}(\cdot) \phi : [0,T]^m \to X$ is continuous for each $\pi \in S_m$. From Theorem 5.1 of [1] we have

$$\lim_{n \to \infty} \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)}) \phi$$

$$(\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}) (ds_1, \cdots, ds_m)$$

$$= \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)}) \phi$$

$$(\mu_1^{m_1} \times \cdots \times \mu_p^{m_p}) (ds_1, \cdots, ds_m).$$

Hence the conclusion follows.

LEMMA 3. Let $\mu_1, \dots, \mu_p, \mu_{1,n}, \dots, \mu_{p,n}, n = 1, 2, \dots$ be continuous probability measures. Suppose for $i = 1, 2, \dots, p$

$$\bar{r}_i = \sup\{r_i, r_{i,1}, \cdots, r_{i,n}, \cdots\} < \infty$$

where $r_i = \int_{[0,T]} ||A_i(s)|| \, |\mu_i|(ds)$ and $r_{i,n} = \int_{[0,T]} ||A_i(s)|| \, |\mu_{i,n}|(ds)$. Then for any

$$f \in \mathbb{A}(\bar{r}_1, \cdots, \bar{r}_p),$$

$$f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)) \in \mathbb{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$$

and

$$f((A_1(\cdot), \mu_{1,n}), \cdots, (A_p(\cdot), \mu_{p,n})) \in \mathbb{D}((A_1(\cdot), \mu_{1,n}), \cdots, (A_p(\cdot), \mu_{p,n}))$$

for any $n = 1, 2, \cdots$.

PROOF. Suppose that

$$f(z_1, \dots, z_p) = \sum_{m_1, \dots, m_p = 0}^{\infty} c_{m_1, \dots, m_p} z_1^{m_1} \dots z_p^{m_p}$$

such that $\sum_{m_1,\dots,m_p=0}^{\infty} |c_{m_1,\dots,m_p}| \bar{r}_1^{m_1} \cdots \bar{r}_p^{m_p} < \infty$. Then

$$\begin{aligned} &||f((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))|| \\ &= \sum_{m_{1},\cdots,m_{p}=0}^{\infty}|c_{m_{1},\cdots,m_{p}}|\left[\int_{[0,T]}||A_{1}(s)||\,|\mu_{1}|(ds)\right]^{m_{1}}\cdots\\ &\left[\int_{[0,T]}||A_{p}(s)||\,|\mu_{p}|(ds)\right]^{m_{p}} \\ &= \sum_{m_{1},\cdots,m_{p}=0}^{\infty}|c_{m_{1},\cdots,m_{p}}|\,\,\bar{r}_{1}^{m_{1}}\cdots\bar{r}_{p}^{m_{p}}\\ &\leq \sum_{m_{1},\cdots,m_{p}=0}^{\infty}|c_{m_{1},\cdots,m_{p}}|\,\,\bar{r}_{1}^{m_{1}}\cdots\bar{r}_{p}^{m_{p}} < \infty. \end{aligned}$$

Hence $f((A_1(\cdot), \mu_1), \dots, (A_p(\cdot), \mu_p)) \in \mathbb{D} ((A_1(\cdot), \mu_1), \dots, (A_p(\cdot), \mu_p))$. Similarly we can check that $f((A_1(\cdot), \mu_{1,n}), \dots, (A_p(\cdot), \mu_{p,n})) \in \mathbb{D} ((A_1(\cdot), \mu_{1,n}), \dots, (A_p(\cdot), \mu_{p,n}))$.

THEOREM 4. Let the hypotheses of Proposition 2 be satisfied. Further suppose that for each $i=1,2,\cdots,p$ and $n=1,2,\cdots,\bar{r}_i,r_i,r_{i,n}$ are given as in Lemma 3. Let $\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}$ denote the disentangling map corresponding to the n^{th} term of sequences of measures. Then for any $f \in \mathbb{A}(\bar{r}_1,\cdots,\bar{r}_p)$, and for any $\phi \in X$,

$$\lim_{n \to \infty} \mathcal{T}_{\mu_1, \dots, \mu_{p,n}} f((A_1(\cdot), \mu_{1,n}), \dots, (A_p(\cdot), \mu_{p,n})) \phi$$

$$= \mathcal{T}_{\mu_1, \dots, \mu_p} f((A_1(\cdot), \mu_1), \dots, (A_p(\cdot), \mu_p)) \phi.$$

Proof. We have

$$\begin{split} &||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}f((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p,n}))\phi\\ &-\mathcal{T}_{\mu_{1},\cdots,\mu_{p}}f((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))\phi||\\ &=||\sum_{m_{1},\cdots,m_{p}=0}^{\infty}c_{m_{1},\cdots,m_{p}}P_{\mu_{1,n},\cdots,\mu_{p,n}}^{m_{1},\cdots,m_{p}}(A_{1}(\cdot),\cdots,A_{p}(\cdot))\phi\\ &-\sum_{m_{1},\cdots,m_{p}=0}^{\infty}c_{m_{1},\cdots,m_{p}}P_{\mu_{1},\cdots,\mu_{p}}^{m_{1},\cdots,m_{p}}(A_{1}(\cdot),\cdots,A_{p}(\cdot))\phi||\\ &\leq\sum_{m_{1},\cdots,m_{p}=0}^{\infty}|c_{m_{1},\cdots,m_{p}}|\,||P_{\mu_{1,n},\cdots,\mu_{p,n}}^{m_{1},\cdots,m_{p}}(A_{1}(\cdot),\cdots,A_{p}(\cdot))\phi\\ &-P_{\mu_{1},\cdots,\mu_{p}}^{m_{1},\cdots,m_{p}}(A_{1}(\cdot),\cdots,A_{p}(\cdot))\phi||. \end{split}$$

Note that

$$\begin{split} &|c_{m_1,\cdots,m_p}|\,||P_{\mu_1,n}^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot))\phi\\ &-P_{\mu_1,\cdots,\mu_p}^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot))\phi||\\ &\leq |c_{m_1,\cdots,m_p}|\big[||P_{\mu_1,n}^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot))||]\\ &+||P_{\mu_1,\cdots,\mu_p}^{m_1,\cdots,m_p}(A_1(\cdot),\cdots,A_p(\cdot))||\big]||\phi||\\ &\leq |c_{m_1,\cdots,m_p}|\big[[\int_{[0,T]}||A_1(s)||\,|\mu_{1,n}|(ds)]^{m_1}\cdots\\ &[\int_{[0,T]}||A_p(s)||\,|\mu_{p,n}|(ds)]^{m_p}+[\int_{[0,T]}||A_1(s)||\,|\mu_1|(ds)]^{m_1}\cdots\\ &[\int_{[0,T]}||A_p(s)||\,|\mu_p|(ds)]^{m_p}\big]||\phi||\\ &=|c_{m_1,\cdots,m_p}|\,\big[r_{1,n}^{m_1}\cdots r_{p,n}^{m_p}+r_1^{m_1}\cdots r_p^{m_p}\big]||\phi||\\ &\leq 2|c_{m_1,\cdots,m_p}|\,\bar{r}_1^{m_1}\cdots \bar{r}_p^{m_p}||\phi||. \end{split}$$

Since $\sum_{m_1,\dots,m_p=0}^{\infty} |c_{m_1,\dots,m_p}| \bar{r}_1^{m_1} \cdots \bar{r}_p^{m_p} < \infty$, by Proposition 2 and Lebesgue Dominated Convergence Theorem, we obtain the result. \square

THEOREM 5. Let $A_i:[0,T]\to \mathcal{L}(X)$ be measurable for each $i=1,2,\cdots,p$. Let $\{\mu_{i,n}\}_{n=1}^{\infty}$ for $i=1,2,\cdots,p$ be sequences of continuous Borel probability measures on [0,T] such that $\mu_{i,n}\rightharpoonup \mu_i$ for each i. Further assume that $M_i:=\sup_{s\in[0,T]}||A_i(s)||<\infty$ for each $i=1,\cdots,p$. Then for any $f\in\mathbb{A}(M_1,\cdots,M_p)$,

$$\lim_{n\to\infty} \mathcal{T}_{\mu_{1,n},\dots,\mu_{p,n}} f((A_1(\cdot),\mu_{1,n}),\dots,(A_p(\cdot),\mu_{p,n}))$$

$$= \mathcal{T}_{\mu_1,\dots,\mu_p} f((A_1(\cdot),\mu_1),\dots,(A_p(\cdot),\mu_p)).$$

PROOF. First we consider $P_{\mu_1,\dots,\mu_p}^{m_1,\dots,m_p}(A_1(\cdot),\dots,A_p(\cdot))$. We see that

$$\begin{split} ||T_{\mu_{1,n},\cdots,\mu_{p,n}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p,n}))\\ &-T_{\mu_{1},\cdots,\mu_{p}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))||\\ =||\sum_{\pi\in S_{m}}\int_{\Delta_{m}(\pi)}C_{\pi(m)}(s_{\pi(m)})\cdots C_{\pi(1)}(s_{\pi(1)})\left(\mu_{1,n}^{m_{1}}\times\cdots\times\mu_{p,n}^{m_{p}}\right)\\ &(ds_{1},\cdots,ds_{m})\\ &-\sum_{\pi\in S_{m}}\int_{\Delta_{m}(\pi)}C_{\pi(m)}(s_{\pi(m)})\cdots C_{\pi(1)}(s_{\pi(1)})\left(\mu_{1}^{m_{1}}\times\cdots\times\mu_{p}^{m_{p}}\right)\\ &(ds_{1},\cdots,ds_{m})||\\ \leq\sum_{\pi\in S_{m}}\int_{\Delta_{m}(\pi)}||C_{\pi(m)}(s_{\pi(m)})\cdots C_{\pi(1)}(s_{\pi(1)})||\\ &|\mu_{1,n}^{m_{1}}\times\cdots\times\mu_{p,n}^{m_{p}}(ds_{1},\cdots,ds_{m})-\mu_{1}^{m_{1}}\times\cdots\times\mu_{p}^{m_{p}}(ds_{1},\cdots,ds_{m})|\\ \leq\sum_{\pi\in S_{m}}M_{1}^{m_{1}}\cdots M_{p}^{m_{p}}\left|\mu_{1,n}^{m_{1}}\times\cdots\times\mu_{p,n}^{m_{p}}(\Delta_{m}(\pi))-\mu_{1}^{m_{1}}\times\cdots\times\mu_{p}^{m_{p}}(\Delta_{m}(\pi))|. \end{split}$$

Here $\{\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}\}$ is a sequence of continuous probability measures on $[0,T]^m$. Since $[0,T]^m$ is separable and $\mu_{i,n} \rightharpoonup \mu_i$ for each i, $\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p} \rightharpoonup \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}$ using Theorem 3.2 of [1]. We can apply (v) of Theorem 2.1 of [1] to conclude that

$$|\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}(\Delta_m(\pi)) - \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}(\Delta_m(\pi))| \to 0$$

as $n \to \infty$. We therefore conclude

(4)
$$\lim_{n \to \infty} \mathcal{T}_{\mu_{1,n},\dots,\mu_{p,n}} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot),\mu_{1,n}),\dots,(A_{p}(\cdot),\mu_{p,n}))$$

$$= \mathcal{T}_{\mu_{1},\dots,\mu_{p}} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot),\mu_{1}),\dots,(A_{p}(\cdot),\mu_{p})).$$

We now turn to $\mathcal{T}_{\mu_1,\dots,\mu_p}f((A_1(\cdot),\mu_1),\dots,(A_p(\cdot),\mu_p))$. For $f \in \mathbb{A}(M_1,\dots,M_p)$ we have

$$||T_{\mu_{1},n}, \dots, \mu_{p,n} f((A_{1}(\cdot), \mu_{1,n}), \dots, (A_{p}(\cdot), \mu_{p,n})) - T_{\mu_{1},\dots,\mu_{p}} f((A_{1}(\cdot), \mu_{1}), \dots, (A_{p}(\cdot), \mu_{p}))||$$

$$= ||\sum_{m_{1},\dots,m_{p}=0}^{\infty} c_{m_{1},\dots,m_{p}} T_{\mu_{1},n}, \dots, \mu_{p,n} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot), \mu_{1,n}), \dots, (A_{p}(\cdot), \mu_{p,n})) - \sum_{m_{1},\dots,m_{p}=0}^{\infty} c_{m_{1},\dots,m_{p}} T_{\mu_{1},\dots,\mu_{p}} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot), \mu_{1}), \dots, (A_{p}(\cdot), \mu_{p}))||$$

$$\leq \sum_{m_{1},\dots,m_{p}=0}^{\infty} |c_{m_{1},\dots,m_{p}}| ||T_{\mu_{1},n}, \dots, \mu_{p,n} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot), \mu_{1,n}), \dots, (A_{p}(\cdot), \mu_{p,n})) - T_{\mu_{1},\dots,\mu_{p}} P^{m_{1},\dots,m_{p}} ((A_{1}(\cdot), \mu_{1}), \dots, (A_{p}(\cdot), \mu_{p}))||.$$

Now

$$\begin{split} &|c_{m_{1},\cdots,m_{p}}|\,||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p,n}))\\ &-\mathcal{T}_{\mu_{1},\cdots,\mu_{p}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))||\\ &\leq |c_{m_{1},\cdots,m_{p}}|\big[||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p}))||\\ &\leq |c_{m_{1},\cdots,m_{p}}|\big[||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p}}P^{m_{1},\cdots,m_{p}}((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))|||\big]\\ &\leq |c_{m_{1},\cdots,m_{p}}|\big[[\int_{[0,T]}||A_{1}(s)|||\mu_{1,n}|(ds)]^{m_{1}}\cdots\big[\int_{[0,T]}||A_{p}(s)|||\mu_{p,n}|(ds)]^{m_{p}}\\ &+ |\int_{[0,T]}||A_{1}(s)||\,|\mu_{1}|(ds)]^{m_{1}}\cdots\big[\int_{[0,T]}||A_{p}(s)||\,|\mu_{p}|(ds)]^{m_{p}}\big]\\ &\leq 2|c_{m_{1},\cdots,m_{p}}|M_{1}^{m_{1}}\cdots M_{p}^{m_{p}}.\end{split}$$

Since $\sum_{m_1,\dots,m_p=0}^{\infty} |c_{m_1,\dots,m_p}| M_1^{m_1} \cdots M_p^{m_p} < \infty$, by (4) and Lebesgue Dominated Convergence Theorem, we obtain the result.

COROLLARY 6. Assume the same hypotheses as in Theorem 5. Then for any $f \in \mathbb{A}(M_1, \dots, M_p)$, and for any $\phi \in X$,

$$\lim_{n \to \infty} \mathcal{T}_{\mu_{1,n},\dots,\mu_{p,n}} f((A_{1}(\cdot),\mu_{1,n}),\dots,(A_{p}(\cdot),\mu_{p,n})) \phi$$

$$= \mathcal{T}_{\mu_{1},\dots,\mu_{p}} f((A_{1}(\cdot),\mu_{1}),\dots,(A_{p}(\cdot),\mu_{p})) \phi.$$

PROOF. Let $f \in \mathbb{A}(M_1, \dots, M_p)$. Then for any $\phi \in X$, we have

$$||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}f((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p,n}))\phi - \mathcal{T}_{\mu_{1},\cdots,\mu_{p}}f((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))\phi||$$

$$\leq ||\mathcal{T}_{\mu_{1,n},\cdots,\mu_{p,n}}f((A_{1}(\cdot),\mu_{1,n}),\cdots,(A_{p}(\cdot),\mu_{p,n})) - \mathcal{T}_{\mu_{1},\cdots,\mu_{p}}f((A_{1}(\cdot),\mu_{1}),\cdots,(A_{p}(\cdot),\mu_{p}))|| ||\phi|| \to 0$$

as $n \to \infty$ by Theorem 5. This finishes the proof.

References

- [1] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.
- [2] R. Feynman, An operator calculus having application in quantum electrodynamics, Phys. Rev. 84 (1951), 108-128.
- [3] B. Jefferies and G. W. Johnson, Feynman's operational calculi for noncommuting operators: Definitions and elementary properties, Russian J. Math. Phys. 8 (2001), 153–178.
- [4] ______, Feynman's operational calculi for noncommuting operators: Tensors, ordered supports and disentangling an exponential factor, Math. Notes 70 (2001), 744-764.
- [5] _____, Feynman's operational calculi for noncommuting operators: Spectral theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 171–199.
- [6] _____, Feynman's operational calculi for noncommuting operators: The monogenic calculus, Adv. Appl. Clifford Algebras 11 (2002), 233-265.
- [7] B. Jefferies, G. W. Johnson and L. Nielsen, Feynman's operational calculi for time dependent noncommuting operators, J. Korean Math. Soc. 38 (2001), 193– 226
- [8] G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman operational calculus, Oxford U. Press, Oxford, 2000.
- [9] _____, Generalized Dyson series, generalized Feynman diagrams, The Feynman integral and Feynman's operational calculus, Mem. Amer. Math. Soc. 62 (1986), 1–78.
- [10] G. W. Johnson and L. Nielsen, A stability theorem for Feynman's operational calculi, Conf. Proc. Canadian Math. Soc.: Conference in honor of Sergio Albeverio's 60th birthday 29 (2000), 351-365.

Byung Moo Ahn
Department of Mathematics
Soonchynhyang University Asan
Chungnam 336-745, Korea
E-mail: anbymo@sch.ac.kr

Choon Ho Lee
Department of Mathematics
Hoseo University Asan
Chungnam 336-795, Korea
E-mail: chlee@math.hoseo.ac.kr