A NOTE ON CERTAIN QUOTIENT SPACES OF BOUNDED LINEAR OPERATORS

CHONG-MAN CHO AND SEONG-JIN JU

ABSTRACT. Suppose X is a closed subspace of $Z = (\sum_{n=1}^{\infty} Z_n)_p$ (1 . We investigate an isometrically isomorphic embedding of <math>L(X)/K(X) into L(X,Z)/K(X,Z), where L(X,Z) (resp. L(X)) is the space of the bounded linear operators from X to Z (resp. from X to X) and K(X,Z) (resp. K(X)) is the space of the compact linear operators from X to X (resp. from X to X).

1. Introduction and preliminaries

If X and Y are Banach spaces, L(X,Y) (resp. K(X,Y)) will denote the Banach space of all bounded linear operators (resp. compact linear operators) from X to Y. If X=Y, then we simply write L(X) (resp. K(X)). An interesting problem is the proximinal property of K(X,Y) in L(X,Y). Many authors [1, 3-7] have studied this problem and found examples of Banach spaces X and Y for which K(X,Y) is proximinal in L(X,Y). Recall that a closed subspace J of a normed space F is called a proximinal subspace if for each $x \in F \setminus J$ there exists $y \in J$ such that $\|x-y\| = \inf\{\|x-j\| : j \in J\}$, that is, the distance d(x,J) from x to J is attained at y.

In this paper we restrict ourselves to an ℓ_p -sum $Z = (\sum_{n=1}^{\infty} Z_n)_p$ (1 and a closed space <math>X of Z. The proximinality of K(X,Z) in L(X,Z) was already solved positively [1,6]. Now our interest is to see how $T \in L(X,Z)$ determines d(T,K(X,Z)), the norm of T+K(X,Z) in the quotient space L(X,Z)/K(X,Z). In Proposition 2.4, for given $T \in L(X,Z)$ we will write the distance d(T,K(X,Z)) in terms

Received January 29, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 46B04, 46B25.

Key words and phrases: bounded linear operator, compact operator, quotient space, ℓ_p -sum.

The first named author was supported by Hanyang University, Korea, in the program year of 2002.

of T. In Theorem 2.5, using Proposition 2.4 we find a condition under which the map $T + K(X) \to T + K(X, Z)$ is an isometric isomorphism from L(X)/K(X) into L(X, Z)/K(X, Z).

Suppose $\{Z_n\}_{n=1}^{\infty}$ is a sequence of Banach spaces. For $1 \leq p < \infty$, ℓ_p -sum $(\sum_{n=1}^{\infty} Z_n)_p$ of Z_n 's is the Banach space of sequences $z = (z_1, z_2, \cdots)$, $z_n \in Z_n$, with the norm $\|z\| = (\sum_{n=1}^{\infty} \|z_n\|^p)^{1/p} < \infty$. For $p = \infty$, ℓ_{∞} -sum $(\sum_{n=1}^{\infty} Z_n)_{\infty}$ of Z_n 's is defined similarly by sequences $z = (z_1, z_2, \cdots)$, $z_n \in Z_n$, with the norm $\|z\| = \sup_n \{\|z_n\|\} < \infty$.

For each m, the map $P_m: (\sum_{n=1}^{\infty} Z_n)_p \to (\sum_{n=1}^{\infty} Z_n)_p$ defined by $P_m(z) = (z_1, z_2, \cdots, z_m, 0, 0, \cdots), \ z = (z_1, z_2, \cdots) \in (\sum_{n=1}^{\infty} Z_n)_p$ is a norm one projection. These projections are called the natural projections on $(\sum_{n=1}^{\infty} Z_n)_p$.

For $1 \leq p < \infty$, the dual space $(\sum_{n=1}^{\infty} Z_n)_p^*$ is $(\sum_{n=1}^{\infty} Z_n^*)_q$, where $\frac{1}{p} + \frac{1}{q} = 1$. The adjoint operator P_n^* of the natural projection P_n on $(\sum_{n=1}^{\infty} Z_n)_p$ turns out to be the natural projection on $(\sum_{n=1}^{\infty} Z_n^*)_q$. Therefore, if every Z_n is reflexive, $(\sum_{n=1}^{\infty} Z_n)_p$ is also reflexive for 1 .

In the rest of this article, unless otherwise specified Z_n will always denote a finite dimensional Banach space and $1 . <math>P_n$ will denote the natural projection on $(\sum_{n=1}^{\infty} Z_n)_p$. If Y is a Banach space, then B_Y will denote the closed unit ball of Y. \mathbb{N} will denote the set of the natural numbers.

2. Results

We start with a proposition whose proof seems to be more or less obvious. However, we still include a proof.

PROPOSITION 2.1. Let Y be a Banach space and $Z = (\sum_{n=1}^{\infty} Z_n)_p$, $1 \le p < \infty$. If $T \in L(Y, Z)$, then $d(T, K(Y, Z)) = \lim_{n \to \infty} ||T - P_n T||$.

PROOF. Let $\alpha = d(T, K(Y, Z))$ and $\varepsilon > 0$. We choose $S \in K(Y, Z)$ such that $\alpha + \varepsilon > ||T - S||$. Since $S(B_Y)$ has the compact closure, there exists $m \in \mathbb{N}$ such that for all $n \geq m$ and all $y \in B_Y$

$$||(I-P_n)S(y)|| < \varepsilon.$$

Thus, for all $n \geq m$, $||S - P_n S|| \leq \varepsilon$ and

$$\alpha + \varepsilon > ||T - S|| \ge ||T - P_n S|| - ||S - P_n S||$$

 $\ge ||T - P_n T|| - \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, $\lim_{n \to \infty} ||T - P_n T|| \le \alpha$.

On the other hand, since $P_nT \in K(Y, Z)$, $||T - P_nT|| \ge \alpha$ for all n. Therefore, $\lim_{n\to\infty} ||T - P_nT|| = \alpha$.

REMARK. In the above proposition, with a small modification in the proof, we can replace Z by any Banach space E with a Schauder basis.

LEMMA 2.2. Suppose X is a closed subspace of $(\sum_{n=1}^{\infty} Z_n)_p$, and $\{h_n\}_{n=1}^{\infty}$ is a sequence in X^* such that $\|h_n\| = 1$ for all n and $h_n \to 0$ weakly as $n \to \infty$. If $\{x_n\}_{n=1}^{\infty}$ is a sequence in X such that $h_n(x_n) = 1 = \|x_n\|$ for all n, then $x_{n_k} \to 0$ weakly as $k \to \infty$ for some subsequence $\{x_{n_k}\}_{k=1}^{\infty}$.

PROOF. Since B_X is weakly compact [2, p.245], without loss of generality we may assume that $x_n \to x \in B_X$ weakly as $n \to \infty$. Writing $x_n = x + y_n$ for all n (where $y_n \to 0$ weakly as $n \to \infty$), we have $1 = \lim_{n \to \infty} \|x_n\|^p = \lim_{n \to \infty} (\|x\|^p + \|y_n\|^p)$. On the other hand, since $1 = h_n(x_n) = h_n(x) + h_n(y_n)$ and $h_n(x) \to 0$ as $n \to \infty$, $1 = \lim_{n \to \infty} h_n(x_n) = \lim_{n \to \infty} h_n(y_n) \le \lim_{n \to \infty} \|y_n\|$. Therefore, x = 0 and $x_n \to 0$ weakly as $n \to \infty$.

LEMMA 2.3. Suppose X is a closed subspace of $(\sum_{n=1}^{\infty} Z_n)_p$, and suppose $\{h_n\}_{n=1}^{\infty}$ is a sequence in X^* such that $||h_n|| = 1$ for all n and $h_n \to 0$ weakly as $n \to \infty$. If Y is a closed subspace of X with $\dim(X/Y) < \infty$, then there exists a subsequence $\{h_{n_k}\}_{k=1}^{\infty}$ of $\{h_n\}_{n=1}^{\infty}$ such that $||h_{n_k}|_Y|| \to 1$ as $k \to \infty$.

PROOF. Since B_X is weakly compact, we can choose a sequence $\{x_n\}_{n=1}^{\infty}$ in B_X such that $h_n(x_n)=1=\|x_n\|$ for all n. Then by Lemma 2.2, there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $x_{n_k} \to 0$ weakly as $k \to \infty$. In particular, for each $z^* \in B_{Y^{\perp}}$, $z^*(x_{n_k}) \to 0$ as $k \to \infty$. Since $(X/Y)^* = Y^{\perp}$ is finite dimensional, $B_{Y^{\perp}}$ is compact [2, p.245] and hence $\sup\{|z^*(x_{n_k})|: z^* \in B_{Y^{\perp}}\} \to 0$ as $k \to \infty$. On the other hand, in view of $(X/Y)^* = Y^{\perp}$ we have

$$d(x_{n_k}, Y) = \|\tilde{x}_{n_k}\| = \sup\{|f(\tilde{x}_{n_k})| : f \in (X/Y)^*, \|f\| \le 1\}$$
$$= \sup\{|z^*(x_{n_k})| : z^* \in B_{Y^{\perp}}\},$$

where $\tilde{x}_{n_k} = x_{n_k} + Y \in X/Y$.

Therefore, $d(x_{n_k}, Y) \to 0$ as $k \to \infty$. Since $h_{n_k}(x_{n_k}) = 1$ for all k, $||h_{n_k}|_Y|| \to 1$ as $k \to \infty$.

PROPOSITION 2.4. Suppose X is a closed subspace of $Z = (\sum_{n=1}^{\infty} Z_n)_p$. If $T \in L(X, Z)$, then $d(T, K(X, Z)) = \lim_{n \to \infty} \|T|_{X_n}\|$, where $X_n = X \cap (I - P_n)Z$.

PROOF. Let $\alpha = d(T, K(X, Z))$. Choose $g_n \in (I - P_n^*)Z^*$ such that $||g_n|| = 1$ and

$$||T^*(g_n)|| \le ||T^*|_{(I-P_n^*)Z^*}|| < ||T^*(g_n)|| + \frac{1}{n}.$$

By Proposition 2.1, $||T^*|_{(I-P_n^*)Z^*}|| = ||(T-P_nT)^*|| \to \alpha$ and hence $||T^*(g_n)|| \to \alpha$ as $n \to \infty$. Since $g_n \to 0$ weakly in Z^* as $n \to \infty$, $T^*(g_n) \to 0$ weakly in X^* as $n \to \infty$. Since $\dim(X/X_n) < \infty$, by Lemma 2.3, for fixed $n \in \mathbb{N}$ there exists a subsequence $\{g_{n_k}\}_{k=1}^{\infty}$ of $\{g_n\}_{n=1}^{\infty}$ such that $||T^*(g_{n_k})|_{X_n}|| \to \alpha$ as $k \to \infty$. On the other hand, we have

$$||T|_{X_n}|| = \sup_{y \in B_{X_n}} ||Ty||$$

$$= \sup_{y \in B_{X_n}} \sup_{f \in B_{Z^*}} |f(Ty)|$$

$$= \sup_{f \in B_{Z^*}} \sup_{y \in B_{X_n}} |(T^*f)y|$$

$$= \sup_{f \in B_{Z^*}} ||(T^*f)|_{X_n}||$$

$$\geq ||T^*(q_{n_k})|_{X_n}|| \text{ for all } k.$$

Therefore, it follows that $\lim_{n\to\infty} ||T|_{X_n}|| \geq \alpha$.

To prove the reversed inequality, let $\varepsilon > 0$. As in the proof of Proposition 2.1, we choose $S \in K(X, \mathbb{Z})$ and $m \in \mathbb{N}$ such that

$$\alpha + \varepsilon > ||T - S||$$
 and $||S - P_n S|| < \varepsilon$ for all $n \ge m$.

A finite rank operator $P_mS: X \to P_mZ$ can be extended to a bounded linear operator $\widetilde{P_mS}: Z \to P_mZ$. Since the adjoint of $\widetilde{P_mS}$ is also compact, we can find $n_0 \in \mathbb{N}$ $(n_0 \ge m)$ such that

$$\|\widetilde{P_mS}(I-P_k)\|<\varepsilon\quad\text{for all }k\geq n_0.$$

Therefore, for $k \geq n_0$

$$||S|_{X_k}|| \le ||(S - P_m S)|_{X_k}|| + ||(P_m S)|_{X_k}|| < 2\varepsilon.$$

It follows that for all $k \geq n_0$

$$\alpha+\varepsilon\geq \|T|_{X_k}\|-\|S|_{X_k}\|\geq \|T|_{X_k}\|-2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have $\alpha \ge \lim_{n \to \infty} ||T|_{X_n}||$.

Observe that since X/X_n is finite dimensional X_n is complemented in X. Let Y_n be a subspace of X complementary to X_n , that is $X = Y_n \oplus X_n$ and let Q_n be the projection on X with the range Y_n . If $\lim \inf_n \|I - Q_n\| = 1$, we get the following result.

THEOREM 2.5. Let X be a closed subspace of $Z = (\sum_{n=1}^{\infty} Z_n)_p$ and let Q_n be as above. If $\liminf_n ||I - Q_n|| = 1$, then L(X)/K(X) is isometrically embedded into L(X, Z)/K(X, Z).

PROOF. Let $T \in L(X)$, $\alpha = d(T, K(X, Z))$ and $\beta = d(T, K(X))$. First we will show that $\alpha = \beta$. Since $\alpha \leq \beta$, we only need to show that $\beta \leq \alpha = \lim_{n \to \infty} \|T|_{X_n}\|$. Since $TQ_n \in K(X)$ for every n, writing $T = T(I - Q_n) + TQ_n$ we have

$$\beta = d(T, K(X)) = d(T(I - Q_n), K(X)) \le ||T(I - Q_n)||.$$

By passing to a subsequence if necessary, we may assume that $||I - Q_n|| \to 1$ as $n \to \infty$. Let $\varepsilon > 0$. We choose $m \in \mathbb{N}$ such that $||I - Q_n|| < 1 + \varepsilon$ for all $n \ge m$. Then for all $n \ge m$

$$||T(I-Q_n)|| < ||T|_{X_n}||(1+\varepsilon)$$

and hence

$$\beta < ||T|_{X_n}||(1+\varepsilon).$$

Therefore, $\beta \leq \lim_{n \to \infty} ||T|_{X_n}||$.

Next, observe that since $K(X) \subseteq K(X,Z)$ the map $\phi: L(X,Z)/K(X) \to L(X,Z)/K(X,Z)$ defined by $\phi(T+K(X)) = T+K(X,Z)$ for $T \in L(X,Z)$ is a norm decreasing linear operator. If $T \in L(X)$, Then by the above observation ||T+K(X)|| = ||T+K(X,Z)|| and hence ϕ restricted to L(X)/K(X) is a linear isometry.

If each E_n is a subspace of Z_n and $X = (\sum_{n=1}^{\infty} E_n)_p$, then projections $\{Q_n\}_{n=1}^{\infty}$ in the above theorem are nothing but the natural projections on $X = (\sum_{n=1}^{\infty} E_n)_p$, and hence $||I - Q_n|| = ||Q_n|| = 1$. Therefore, we have the following corollary.

COROLLARY 2.6. Suppose a closed subspace X of $Z = (\sum_{n=1}^{\infty} Z_n)_p$ has the form of $X = (\sum_{n=1}^{\infty} E_n)_p$, where each E_n is a subspace of Z_n . Then L(X)/K(X) is isometrically embedded into L(X,Z)/K(X,Z).

References

- [1] C.-M. Cho, A Note on M-ideals of Compact Operators, Canad. Math. Bull. 32 (1989), 434-440.
- [2] N. Dunford and J. Schwartz, *Linear Operators*, Vol.I. Interscience Publisher, New York, 1958.
- [3] G. Godini, Characterization of Proximinal Subspaces in Normed Linear Spaces, Rev. Roumaine Math. Pures Appl., TOME XVIII 6 (1973), 901–906.
- [4] R. B. Holmes, B. Scranton and J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259–269.

- [5] K. Saatkamp, Best Approximation in the Space of Bounded Operators and its Applications, Math. Ann. 250 (1980), 35-54.
- [6] D. T. Yost, Best Approximation and Intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 258-300.
- [7] _____, Approximation by Compact Operators between C(X) Spaces, J. Approx. Theory 49 (1987), 99–109.

Chong-Man Cho
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: cmcho@email.hanyang.ac.kr

Seong-Jin Ju
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: sjju@add.re.kr